Effects of Anodal tDCS Applied Over the Cerebellum Combined with Physical Therapy on Center of Gravity Sway in a Patient with Cerebellar Ataxia: A Single-Case Study.

IF 2.7 3区 医学 Q3 NEUROSCIENCES Cerebellum Pub Date : 2024-12-01 Epub Date: 2024-07-25 DOI:10.1007/s12311-024-01719-5
Yuki Sato, Naruhito Hasui, Naomichi Mizuta, Sora Ohnishi, Yohei Okada, Tomoki Nakatani, Junji Taguchi, Shu Morioka
{"title":"Effects of Anodal tDCS Applied Over the Cerebellum Combined with Physical Therapy on Center of Gravity Sway in a Patient with Cerebellar Ataxia: A Single-Case Study.","authors":"Yuki Sato, Naruhito Hasui, Naomichi Mizuta, Sora Ohnishi, Yohei Okada, Tomoki Nakatani, Junji Taguchi, Shu Morioka","doi":"10.1007/s12311-024-01719-5","DOIUrl":null,"url":null,"abstract":"<p><p>Damage to the cerebellum results in dysfunctional standing postural control. Patients with cerebellar ataxia have a larger sway in the center of gravity (COG) while standing. Transcranial direct current stimulation (tDCS) has been applied in the rehabilitation of patients with central nervous system disorders; however, its effect on COG sway in patients with cerebellar ataxia remains unknown. We aimed to confirm the effects of anodal cerebellar tDCS (ctDCS) combined with physical therapy on COG sway in a patient with cerebellar ataxia using a retrospective ABA single-case study design. This study involved a patient with left cerebellar hemorrhage. Walking and postural balance rehabilitation were conducted in phase A. Anodal ctDCS was combined with the walking and postural balance rehabilitation in phase B. We measured COG sway in the open- and closed-eyes standing conditions daily throughout all the phases. In the open-eyes standing condition, there was no significant change in COG sway in phase B. Conversely, in the closed-eyes standing condition, the circumferential area, total sway path length, and anteroposterior sway path length decreased in phase B. No change was observed in the mediolateral sway path length. The combination of anodal ctDCS and physical therapy may decrease COG sway in patients with cerebellar ataxia in the closed-eyes standing condition, and its effect may be greater in the anteroposterior direction.</p>","PeriodicalId":50706,"journal":{"name":"Cerebellum","volume":" ","pages":"2638-2645"},"PeriodicalIF":2.7000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cerebellum","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12311-024-01719-5","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/25 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Damage to the cerebellum results in dysfunctional standing postural control. Patients with cerebellar ataxia have a larger sway in the center of gravity (COG) while standing. Transcranial direct current stimulation (tDCS) has been applied in the rehabilitation of patients with central nervous system disorders; however, its effect on COG sway in patients with cerebellar ataxia remains unknown. We aimed to confirm the effects of anodal cerebellar tDCS (ctDCS) combined with physical therapy on COG sway in a patient with cerebellar ataxia using a retrospective ABA single-case study design. This study involved a patient with left cerebellar hemorrhage. Walking and postural balance rehabilitation were conducted in phase A. Anodal ctDCS was combined with the walking and postural balance rehabilitation in phase B. We measured COG sway in the open- and closed-eyes standing conditions daily throughout all the phases. In the open-eyes standing condition, there was no significant change in COG sway in phase B. Conversely, in the closed-eyes standing condition, the circumferential area, total sway path length, and anteroposterior sway path length decreased in phase B. No change was observed in the mediolateral sway path length. The combination of anodal ctDCS and physical therapy may decrease COG sway in patients with cerebellar ataxia in the closed-eyes standing condition, and its effect may be greater in the anteroposterior direction.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
应用于小脑的阳极 tDCS 结合物理疗法对小脑共济失调患者重心偏移的影响:单例研究
小脑受损会导致站立姿势控制功能障碍。小脑共济失调患者站立时重心(COG)摇摆较大。经颅直流电刺激(tDCS)已被用于中枢神经系统疾病患者的康复治疗,但它对小脑共济失调患者重心摇摆的影响仍不清楚。我们的目的是采用回顾性 ABA 单病例研究设计,证实阳极小脑 tDCS(ctDCS)结合物理疗法对小脑共济失调患者 COG 摇摆的影响。本研究涉及一名左侧小脑出血患者。我们在所有阶段每天测量睁眼和闭眼站立状态下的COG摇摆。相反,在闭眼站立条件下,周长、总摇摆路径长度和前胸摇摆路径长度在 B 阶段均有所下降,而内外侧摇摆路径长度则没有变化。小脑共济失调患者在闭眼站立状态下,将阳极ctDCS和物理疗法结合使用可能会减少COG摇摆,而且其在前胸方向的效果可能更大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cerebellum
Cerebellum 医学-神经科学
CiteScore
6.40
自引率
14.30%
发文量
150
审稿时长
4-8 weeks
期刊介绍: Official publication of the Society for Research on the Cerebellum devoted to genetics of cerebellar ataxias, role of cerebellum in motor control and cognitive function, and amid an ageing population, diseases associated with cerebellar dysfunction. The Cerebellum is a central source for the latest developments in fundamental neurosciences including molecular and cellular biology; behavioural neurosciences and neurochemistry; genetics; fundamental and clinical neurophysiology; neurology and neuropathology; cognition and neuroimaging. The Cerebellum benefits neuroscientists in molecular and cellular biology; neurophysiologists; researchers in neurotransmission; neurologists; radiologists; paediatricians; neuropsychologists; students of neurology and psychiatry and others.
期刊最新文献
Correction: Systematic Review and Meta-Analysis of the Diagnostic Accuracy of a Graded Gait and Truncal Instability Rating in Acutely Dizzy and Ataxic Patients. Correction: Long-Term Follow-Up Before and During Riluzole Treatment in Six Patients from Two Families with Spinocerebellar Ataxia Type 7. Correction: Silica Nanoparticles from Melon Seed Husk Abrogated Binary Metal(loid) Mediated Cerebellar Dysfunction by Attenuation of Oxido-inflammatory Response and Upregulation of Neurotrophic Factors in Male Albino Rats. Clinical Heterogeneity of Essential Tremor: Understanding Neural Substrates of Action Tremor Subtypes. The Neuroimmune System and the Cerebellum.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1