A critical role for X-chromosome architecture in mammalian X-chromosome dosage compensation

IF 3.7 2区 生物学 Q2 CELL BIOLOGY Current Opinion in Genetics & Development Pub Date : 2024-08-01 DOI:10.1016/j.gde.2024.102235
{"title":"A critical role for X-chromosome architecture in mammalian X-chromosome dosage compensation","authors":"","doi":"10.1016/j.gde.2024.102235","DOIUrl":null,"url":null,"abstract":"<div><p>To regulate gene expression, the macromolecular components of the mammalian interphase nucleus are spatially organized into a myriad of functional compartments. Over the past decade, increasingly sophisticated genomics, microscopy, and functional approaches have probed this organization in unprecedented detail. These investigations have linked chromatin-associated noncoding RNAs to specific nuclear compartments and uncovered mechanisms by which these RNAs establish such domains. In this review, we focus on the long non-coding RNA Xist and summarize new evidence demonstrating the significance of chromatin reconfiguration in creating the inactive X-chromosome compartment. Differences in chromatin compaction correlate with distinct levels of gene repression on the X-chromosome, potentially explaining how human XIST can induce chromosome-wide dampening and silencing of gene expression at different stages of human development.</p></div>","PeriodicalId":50606,"journal":{"name":"Current Opinion in Genetics & Development","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0959437X24000844/pdfft?md5=970f1b4b826ea87648c064627cff6be6&pid=1-s2.0-S0959437X24000844-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Genetics & Development","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0959437X24000844","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

To regulate gene expression, the macromolecular components of the mammalian interphase nucleus are spatially organized into a myriad of functional compartments. Over the past decade, increasingly sophisticated genomics, microscopy, and functional approaches have probed this organization in unprecedented detail. These investigations have linked chromatin-associated noncoding RNAs to specific nuclear compartments and uncovered mechanisms by which these RNAs establish such domains. In this review, we focus on the long non-coding RNA Xist and summarize new evidence demonstrating the significance of chromatin reconfiguration in creating the inactive X-chromosome compartment. Differences in chromatin compaction correlate with distinct levels of gene repression on the X-chromosome, potentially explaining how human XIST can induce chromosome-wide dampening and silencing of gene expression at different stages of human development.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
X染色体结构在哺乳动物X染色体剂量补偿中的关键作用
为了调控基因表达,哺乳动物间期细胞核的大分子成分在空间上被组织成无数个功能区。在过去的十年中,越来越复杂的基因组学、显微学和功能学方法对这种组织结构进行了前所未有的详细探究。这些研究将染色质相关的非编码 RNA 与特定的核区联系起来,并揭示了这些 RNA 建立这些区域的机制。在这篇综述中,我们将重点关注长非编码 RNA Xist,并总结新的证据,证明染色质重构在建立非活性 X 染色体区室中的重要性。染色质压实的差异与 X 染色体上不同程度的基因抑制相关,这可能解释了人类 XIST 如何在人类发育的不同阶段诱导全染色体范围的基因表达抑制和沉默。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.90
自引率
0.00%
发文量
102
审稿时长
1 months
期刊介绍: Current Opinion in Genetics and Development aims to stimulate scientifically grounded, interdisciplinary, multi-scale debate and exchange of ideas. It contains polished, concise and timely reviews and opinions, with particular emphasis on those articles published in the past two years. In addition to describing recent trends, the authors are encouraged to give their subjective opinion of the topics discussed. In Current Opinion in Genetics and Development we help the reader by providing in a systematic manner: 1. The views of experts on current advances in their field in a clear and readable form. 2. Evaluations of the most interesting papers, annotated by experts, from the great wealth of original publications.[...] The subject of Genetics and Development is divided into six themed sections, each of which is reviewed once a year: • Cancer Genomics • Genome Architecture and Expression • Molecular and genetic basis of disease • Developmental mechanisms, patterning and evolution • Cell reprogramming, regeneration and repair • Genetics of Human Origin / Evolutionary genetics (alternate years)
期刊最新文献
Engineering immune organoids to regenerate host immune system Better together: how cooperativity influences transcriptional bursting Strategies for programmable manipulation of alternative splicing Editorial overview: Epitranscriptomics: Exploring a new frontier in health and disease Emerging interactions between RNA methylation and chromatin architecture
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1