Single-cell genomic profiling to study regeneration

IF 3.7 2区 生物学 Q2 CELL BIOLOGY Current Opinion in Genetics & Development Pub Date : 2024-08-01 DOI:10.1016/j.gde.2024.102231
Ashley Maynard , Mateja Soretić , Barbara Treutlein
{"title":"Single-cell genomic profiling to study regeneration","authors":"Ashley Maynard ,&nbsp;Mateja Soretić ,&nbsp;Barbara Treutlein","doi":"10.1016/j.gde.2024.102231","DOIUrl":null,"url":null,"abstract":"<div><p>Regenerative capacities and strategies vary dramatically across animals, as well as between cell types, organs, and with age. In recent years, high-throughput single-cell transcriptomics and other single-cell profiling technologies have been applied to many animal models to gain an understanding of the cellular and molecular mechanisms underlying regeneration. Here, we review recent single-cell studies of regeneration in diverse contexts and summarize key concepts that have emerged. The immense regenerative capacity of some invertebrates, exemplified by planarians, is driven mainly by the differentiation of abundant adult pluripotent stem cells, whereas in many other cases, regeneration involves the reactivation of embryonic or developmental gene-regulatory networks in differentiated cell types. However, regeneration also differs from development in many ways, including the use of regeneration-specific cell types and gene regulatory networks.</p></div>","PeriodicalId":50606,"journal":{"name":"Current Opinion in Genetics & Development","volume":"87 ","pages":"Article 102231"},"PeriodicalIF":3.7000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0959437X24000807/pdfft?md5=812b152d9ba58af1f133e9ddbf185605&pid=1-s2.0-S0959437X24000807-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Genetics & Development","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0959437X24000807","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Regenerative capacities and strategies vary dramatically across animals, as well as between cell types, organs, and with age. In recent years, high-throughput single-cell transcriptomics and other single-cell profiling technologies have been applied to many animal models to gain an understanding of the cellular and molecular mechanisms underlying regeneration. Here, we review recent single-cell studies of regeneration in diverse contexts and summarize key concepts that have emerged. The immense regenerative capacity of some invertebrates, exemplified by planarians, is driven mainly by the differentiation of abundant adult pluripotent stem cells, whereas in many other cases, regeneration involves the reactivation of embryonic or developmental gene-regulatory networks in differentiated cell types. However, regeneration also differs from development in many ways, including the use of regeneration-specific cell types and gene regulatory networks.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
研究再生的单细胞基因组剖析。
不同动物、不同细胞类型、不同器官以及不同年龄段的再生能力和策略都有很大差异。近年来,高通量单细胞转录组学和其他单细胞分析技术已被应用于许多动物模型,以了解再生的细胞和分子机制。在此,我们回顾了最近在不同背景下对再生的单细胞研究,并总结了已出现的关键概念。一些无脊椎动物(以浮游动物为例)的巨大再生能力主要是由丰富的成体多能干细胞分化驱动的,而在许多其他情况下,再生涉及分化细胞类型中胚胎或发育基因调控网络的重新激活。然而,再生与发育也有许多不同之处,包括使用再生特异性细胞类型和基因调控网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.90
自引率
0.00%
发文量
102
审稿时长
1 months
期刊介绍: Current Opinion in Genetics and Development aims to stimulate scientifically grounded, interdisciplinary, multi-scale debate and exchange of ideas. It contains polished, concise and timely reviews and opinions, with particular emphasis on those articles published in the past two years. In addition to describing recent trends, the authors are encouraged to give their subjective opinion of the topics discussed. In Current Opinion in Genetics and Development we help the reader by providing in a systematic manner: 1. The views of experts on current advances in their field in a clear and readable form. 2. Evaluations of the most interesting papers, annotated by experts, from the great wealth of original publications.[...] The subject of Genetics and Development is divided into six themed sections, each of which is reviewed once a year: • Cancer Genomics • Genome Architecture and Expression • Molecular and genetic basis of disease • Developmental mechanisms, patterning and evolution • Cell reprogramming, regeneration and repair • Genetics of Human Origin / Evolutionary genetics (alternate years)
期刊最新文献
In vitro dynamics of DNA loop extrusion by structural maintenance of chromosomes complexes Novelty versus innovation of gene regulatory elements in human evolution and disease Editorial Board Circuit integration by transplanted human neurons Control of cell fate upon transcription factor–driven cardiac reprogramming
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1