Fat Fraction Extracted from Whole-Body Magnetic Resonance (WB-MR) in Bone Metastatic Prostate Cancer: Intra- and Inter-Reader Agreement of Single-Slice and Volumetric Measurements.
Giorgio Maria Agazzi, Nunzia Di Meo, Paolo Rondi, Chiara Saeli, Alberto Dalla Volta, Marika Vezzoli, Alfredo Berruti, Andrea Borghesi, Roberto Maroldi, Marco Ravanelli, Davide Farina
{"title":"Fat Fraction Extracted from Whole-Body Magnetic Resonance (WB-MR) in Bone Metastatic Prostate Cancer: Intra- and Inter-Reader Agreement of Single-Slice and Volumetric Measurements.","authors":"Giorgio Maria Agazzi, Nunzia Di Meo, Paolo Rondi, Chiara Saeli, Alberto Dalla Volta, Marika Vezzoli, Alfredo Berruti, Andrea Borghesi, Roberto Maroldi, Marco Ravanelli, Davide Farina","doi":"10.3390/tomography10070075","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>This study evaluates the repeatability and reproducibility of fat-fraction percentage (FF%) in whole-body magnetic resonance imaging (WB-MRI) of prostate cancer patients with bone metastatic hormone naive disease.</p><p><strong>Methods: </strong>Patients were selected from the database of a prospective phase-II trial. The treatment response was assessed using the METastasis Reporting and Data System for Prostate (MET-RADS-P). Two operators identified a Small Active Lesion (SAL, <10 mm) and a Large Active Lesion (LAL, ≥10 mm) per patient, performing manual segmentation of lesion volume and the largest cross-sectional area. Measurements were repeated by one operator after two weeks. Intra- and inter-reader agreements were assessed via Interclass Correlation Coefficient (ICC) on first-order radiomics features.</p><p><strong>Results: </strong>Intra-reader ICC showed high repeatability for both SAL and LAL in a single slice (SS) and volumetric (VS) measurements with values ranging from 0.897 to 0.971. Inter-reader ICC ranged from 0.641 to 0.883, indicating moderate to good reproducibility. Spearman's rho analysis confirmed a strong correlation between SS and VS measurements for SAL (0.817) and a moderate correlation for LAL (0.649). Both intra- and inter-rater agreement exceeded 0.75 for multiple first-order features across lesion sizes.</p><p><strong>Conclusion: </strong>This study suggests that FF% measurements are reproducible, particularly for larger lesions in both SS and VS assessments.</p>","PeriodicalId":51330,"journal":{"name":"Tomography","volume":"10 7","pages":"1014-1023"},"PeriodicalIF":2.2000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11280977/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tomography","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/tomography10070075","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Background: This study evaluates the repeatability and reproducibility of fat-fraction percentage (FF%) in whole-body magnetic resonance imaging (WB-MRI) of prostate cancer patients with bone metastatic hormone naive disease.
Methods: Patients were selected from the database of a prospective phase-II trial. The treatment response was assessed using the METastasis Reporting and Data System for Prostate (MET-RADS-P). Two operators identified a Small Active Lesion (SAL, <10 mm) and a Large Active Lesion (LAL, ≥10 mm) per patient, performing manual segmentation of lesion volume and the largest cross-sectional area. Measurements were repeated by one operator after two weeks. Intra- and inter-reader agreements were assessed via Interclass Correlation Coefficient (ICC) on first-order radiomics features.
Results: Intra-reader ICC showed high repeatability for both SAL and LAL in a single slice (SS) and volumetric (VS) measurements with values ranging from 0.897 to 0.971. Inter-reader ICC ranged from 0.641 to 0.883, indicating moderate to good reproducibility. Spearman's rho analysis confirmed a strong correlation between SS and VS measurements for SAL (0.817) and a moderate correlation for LAL (0.649). Both intra- and inter-rater agreement exceeded 0.75 for multiple first-order features across lesion sizes.
Conclusion: This study suggests that FF% measurements are reproducible, particularly for larger lesions in both SS and VS assessments.
TomographyMedicine-Radiology, Nuclear Medicine and Imaging
CiteScore
2.70
自引率
10.50%
发文量
222
期刊介绍:
TomographyTM publishes basic (technical and pre-clinical) and clinical scientific articles which involve the advancement of imaging technologies. Tomography encompasses studies that use single or multiple imaging modalities including for example CT, US, PET, SPECT, MR and hyperpolarization technologies, as well as optical modalities (i.e. bioluminescence, photoacoustic, endomicroscopy, fiber optic imaging and optical computed tomography) in basic sciences, engineering, preclinical and clinical medicine.
Tomography also welcomes studies involving exploration and refinement of contrast mechanisms and image-derived metrics within and across modalities toward the development of novel imaging probes for image-based feedback and intervention. The use of imaging in biology and medicine provides unparalleled opportunities to noninvasively interrogate tissues to obtain real-time dynamic and quantitative information required for diagnosis and response to interventions and to follow evolving pathological conditions. As multi-modal studies and the complexities of imaging technologies themselves are ever increasing to provide advanced information to scientists and clinicians.
Tomography provides a unique publication venue allowing investigators the opportunity to more precisely communicate integrated findings related to the diverse and heterogeneous features associated with underlying anatomical, physiological, functional, metabolic and molecular genetic activities of normal and diseased tissue. Thus Tomography publishes peer-reviewed articles which involve the broad use of imaging of any tissue and disease type including both preclinical and clinical investigations. In addition, hardware/software along with chemical and molecular probe advances are welcome as they are deemed to significantly contribute towards the long-term goal of improving the overall impact of imaging on scientific and clinical discovery.