{"title":"Factor-Analytic Variance–Covariance Structures for Prediction Into a Target Population of Environments","authors":"Hans-Peter Piepho, Emlyn Williams","doi":"10.1002/bimj.202400008","DOIUrl":null,"url":null,"abstract":"<p>Finlay–Wilkinson regression is a popular method for modeling genotype–environment interaction in plant breeding and crop variety testing. When environment is a random factor, this model may be cast as a factor-analytic variance–covariance structure, implying a regression on random latent environmental variables. This paper reviews such models with a focus on their use in the analysis of multi-environment trials for the purpose of making predictions in a target population of environments. We investigate the implication of random versus fixed effects assumptions, starting from basic analysis-of-variance models, then moving on to factor-analytic models and considering the transition to models involving observable environmental covariates, which promise to provide more accurate and targeted predictions than models with latent environmental variables.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bimj.202400008","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bimj.202400008","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Finlay–Wilkinson regression is a popular method for modeling genotype–environment interaction in plant breeding and crop variety testing. When environment is a random factor, this model may be cast as a factor-analytic variance–covariance structure, implying a regression on random latent environmental variables. This paper reviews such models with a focus on their use in the analysis of multi-environment trials for the purpose of making predictions in a target population of environments. We investigate the implication of random versus fixed effects assumptions, starting from basic analysis-of-variance models, then moving on to factor-analytic models and considering the transition to models involving observable environmental covariates, which promise to provide more accurate and targeted predictions than models with latent environmental variables.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.