Nicole L Spartano, Yuankai Zhang, Chunyu Liu, Ariel Chernofsky, Honghuang Lin, Ludovic Trinquart, Belinda Borrelli, Chathurangi H Pathiravasan, Vik Kheterpal, Christopher Nowak, Ramachandran S Vasan, Emelia J Benjamin, David D McManus, Joanne M Murabito
{"title":"Agreement Between Apple Watch and Actical Step Counts in a Community Setting: Cross-Sectional Investigation From the Framingham Heart Study.","authors":"Nicole L Spartano, Yuankai Zhang, Chunyu Liu, Ariel Chernofsky, Honghuang Lin, Ludovic Trinquart, Belinda Borrelli, Chathurangi H Pathiravasan, Vik Kheterpal, Christopher Nowak, Ramachandran S Vasan, Emelia J Benjamin, David D McManus, Joanne M Murabito","doi":"10.2196/54631","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Step counting is comparable among many research-grade and consumer-grade accelerometers in laboratory settings.</p><p><strong>Objective: </strong>The purpose of this study was to compare the agreement between Actical and Apple Watch step-counting in a community setting.</p><p><strong>Methods: </strong>Among Third Generation Framingham Heart Study participants (N=3486), we examined the agreement of step-counting between those who wore a consumer-grade accelerometer (Apple Watch Series 0) and a research-grade accelerometer (Actical) on the same days. Secondarily, we examined the agreement during each hour when both devices were worn to account for differences in wear time between devices.</p><p><strong>Results: </strong>We studied 523 participants (n=3223 person-days, mean age 51.7, SD 8.9 years; women: n=298, 57.0%). Between devices, we observed modest correlation (intraclass correlation [ICC] 0.56, 95% CI 0.54-0.59), poor continuous agreement (29.7%, n=957 of days having steps counts with ≤15% difference), a mean difference of 499 steps per day higher count by Actical, and wide limits of agreement, roughly ±9000 steps per day. However, devices showed stronger agreement in identifying who meets various steps per day thresholds (eg, at 8000 steps per day, kappa coefficient=0.49), for which devices were concordant for 74.8% (n=391) of participants. In secondary analyses, in the hours during which both devices were worn (n=456 participants, n=18,760 person-hours), the correlation was much stronger (ICC 0.86, 95% CI 0.85-0.86), but continuous agreement remained poor (27.3%, n=5115 of hours having step counts with ≤15% difference) between devices and was slightly worse for those with mobility limitations or obesity.</p><p><strong>Conclusions: </strong>Our investigation suggests poor overall agreement between steps counted by the Actical device and those counted by the Apple Watch device, with stronger agreement in discriminating who meets certain step thresholds. The impact of these challenges may be minimized if accelerometers are used by individuals to determine whether they are meeting physical activity guidelines or tracking step counts. It is also possible that some of the limitations of these older accelerometers may be improved in newer devices.</p>","PeriodicalId":87288,"journal":{"name":"JMIR biomedical engineering","volume":"9 ","pages":"e54631"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11306942/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JMIR biomedical engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2196/54631","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Step counting is comparable among many research-grade and consumer-grade accelerometers in laboratory settings.
Objective: The purpose of this study was to compare the agreement between Actical and Apple Watch step-counting in a community setting.
Methods: Among Third Generation Framingham Heart Study participants (N=3486), we examined the agreement of step-counting between those who wore a consumer-grade accelerometer (Apple Watch Series 0) and a research-grade accelerometer (Actical) on the same days. Secondarily, we examined the agreement during each hour when both devices were worn to account for differences in wear time between devices.
Results: We studied 523 participants (n=3223 person-days, mean age 51.7, SD 8.9 years; women: n=298, 57.0%). Between devices, we observed modest correlation (intraclass correlation [ICC] 0.56, 95% CI 0.54-0.59), poor continuous agreement (29.7%, n=957 of days having steps counts with ≤15% difference), a mean difference of 499 steps per day higher count by Actical, and wide limits of agreement, roughly ±9000 steps per day. However, devices showed stronger agreement in identifying who meets various steps per day thresholds (eg, at 8000 steps per day, kappa coefficient=0.49), for which devices were concordant for 74.8% (n=391) of participants. In secondary analyses, in the hours during which both devices were worn (n=456 participants, n=18,760 person-hours), the correlation was much stronger (ICC 0.86, 95% CI 0.85-0.86), but continuous agreement remained poor (27.3%, n=5115 of hours having step counts with ≤15% difference) between devices and was slightly worse for those with mobility limitations or obesity.
Conclusions: Our investigation suggests poor overall agreement between steps counted by the Actical device and those counted by the Apple Watch device, with stronger agreement in discriminating who meets certain step thresholds. The impact of these challenges may be minimized if accelerometers are used by individuals to determine whether they are meeting physical activity guidelines or tracking step counts. It is also possible that some of the limitations of these older accelerometers may be improved in newer devices.