Discovering novel targets of abscisic acid using computational approaches

IF 2.6 4区 生物学 Q2 BIOLOGY Computational Biology and Chemistry Pub Date : 2024-07-19 DOI:10.1016/j.compbiolchem.2024.108157
{"title":"Discovering novel targets of abscisic acid using computational approaches","authors":"","doi":"10.1016/j.compbiolchem.2024.108157","DOIUrl":null,"url":null,"abstract":"<div><p>Abscisic acid (ABA) is a crucial plant hormone that is naturally produced in various mammalian tissues and holds significant potential as a therapeutic molecule in humans. ABA is selected for this study due to its known roles in essential human metabolic processes, such as glucose homeostasis, immune responses, cardiovascular system, and inflammation regulation. Despite its known importance, the molecular mechanism underlying ABA's action remain largely unexplored. This study employed computational techniques to identify potential human ABA receptors. We screened 64 candidate molecules using online servers and performed molecular docking to assess binding affinity and interaction types with ABA. The stability and dynamics of the best complexes were investigated using molecular dynamics simulation over a 100 ns time period. Root mean square fluctuations (RMSF), root mean square deviation (RMSD), solvent-accessible surface area (SASA), radius of gyration (Rg), free energy landscape (FEL), and principal component analysis (PCA) were analyzed. Next, the molecular mechanics Poisson–Boltzmann surface area (MM-PBSA) method was employed to calculate the binding energies of the complexes based on the simulated data. Our study successfully pinpointed four key receptors responsible for ABA signaling (androgen receptor, glucocorticoid receptor, mineralocorticoid receptor, and retinoic acid receptor beta) that have a strong affinity for binding with ABA and remained structurally stable throughout the simulations. The simulations with Hydralazine as an unrelated ligand were conducted to validate the specificity of the identified receptors for ABA. The findings of this study can contribute to further experimental validation and a better understanding of how ABA functions in humans.</p></div>","PeriodicalId":10616,"journal":{"name":"Computational Biology and Chemistry","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Biology and Chemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1476927124001452","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Abscisic acid (ABA) is a crucial plant hormone that is naturally produced in various mammalian tissues and holds significant potential as a therapeutic molecule in humans. ABA is selected for this study due to its known roles in essential human metabolic processes, such as glucose homeostasis, immune responses, cardiovascular system, and inflammation regulation. Despite its known importance, the molecular mechanism underlying ABA's action remain largely unexplored. This study employed computational techniques to identify potential human ABA receptors. We screened 64 candidate molecules using online servers and performed molecular docking to assess binding affinity and interaction types with ABA. The stability and dynamics of the best complexes were investigated using molecular dynamics simulation over a 100 ns time period. Root mean square fluctuations (RMSF), root mean square deviation (RMSD), solvent-accessible surface area (SASA), radius of gyration (Rg), free energy landscape (FEL), and principal component analysis (PCA) were analyzed. Next, the molecular mechanics Poisson–Boltzmann surface area (MM-PBSA) method was employed to calculate the binding energies of the complexes based on the simulated data. Our study successfully pinpointed four key receptors responsible for ABA signaling (androgen receptor, glucocorticoid receptor, mineralocorticoid receptor, and retinoic acid receptor beta) that have a strong affinity for binding with ABA and remained structurally stable throughout the simulations. The simulations with Hydralazine as an unrelated ligand were conducted to validate the specificity of the identified receptors for ABA. The findings of this study can contribute to further experimental validation and a better understanding of how ABA functions in humans.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用计算方法发现脱落酸的新靶标。
脱落酸(ABA)是一种重要的植物激素,可在各种哺乳动物组织中自然产生,并具有作为人类治疗分子的巨大潜力。本研究之所以选择脱落酸,是因为它在葡萄糖稳态、免疫反应、心血管系统和炎症调节等人体重要代谢过程中发挥着已知的作用。尽管已知其重要性,但 ABA 作用的分子机制在很大程度上仍未得到探索。本研究采用计算技术来鉴定潜在的人类 ABA 受体。我们利用在线服务器筛选了 64 个候选分子,并进行了分子对接,以评估与 ABA 的结合亲和力和相互作用类型。我们利用分子动力学模拟研究了最佳复合物在 100 ns 时间段内的稳定性和动态性。分析了均方根波动(RMSF)、均方根偏差(RMSD)、可溶解表面积(SASA)、回旋半径(Rg)、自由能景观(FEL)和主成分分析(PCA)。然后,根据模拟数据,采用分子力学泊松-玻尔兹曼表面积(MM-PBSA)方法计算复合物的结合能。我们的研究成功地确定了负责 ABA 信号传导的四个关键受体(雄激素受体、糖皮质激素受体、矿质皮质激素受体和视黄酸受体 beta),它们与 ABA 的结合亲和力很强,并且在整个模拟过程中保持结构稳定。为了验证已确定的受体对 ABA 的特异性,还将肼屈嗪作为非相关配体进行了模拟。本研究的发现有助于进一步的实验验证,并有助于更好地了解 ABA 在人体中的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computational Biology and Chemistry
Computational Biology and Chemistry 生物-计算机:跨学科应用
CiteScore
6.10
自引率
3.20%
发文量
142
审稿时长
24 days
期刊介绍: Computational Biology and Chemistry publishes original research papers and review articles in all areas of computational life sciences. High quality research contributions with a major computational component in the areas of nucleic acid and protein sequence research, molecular evolution, molecular genetics (functional genomics and proteomics), theory and practice of either biology-specific or chemical-biology-specific modeling, and structural biology of nucleic acids and proteins are particularly welcome. Exceptionally high quality research work in bioinformatics, systems biology, ecology, computational pharmacology, metabolism, biomedical engineering, epidemiology, and statistical genetics will also be considered. Given their inherent uncertainty, protein modeling and molecular docking studies should be thoroughly validated. In the absence of experimental results for validation, the use of molecular dynamics simulations along with detailed free energy calculations, for example, should be used as complementary techniques to support the major conclusions. Submissions of premature modeling exercises without additional biological insights will not be considered. Review articles will generally be commissioned by the editors and should not be submitted to the journal without explicit invitation. However prospective authors are welcome to send a brief (one to three pages) synopsis, which will be evaluated by the editors.
期刊最新文献
ILYCROsite: Identification of lysine crotonylation sites based on FCM-GRNN undersampling technique A comprehensive bioinformatic analysis of the role of TGF-β1-stimulated activating transcription factor 3 by non-coding RNAs during breast cancer progression Unveiling therapeutic biomarkers and druggable targets in ALS: An integrative microarray analysis, molecular docking, and structural dynamic studies Accurately identifying positive and negative regulation of apoptosis using fusion features and machine learning methods Molecular descriptors and in silico studies of 4-((5-(decylthio)-4-methyl-4n-1,2,4-triazol-3-yl)methyl)morpholine as a potential drug for the treatment of fungal pathologies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1