Precise Localization for Anatomo-Physiological Hallmarks of the Cervical Spine by Using Neural Memory Ordinary Differential Equation.

International journal of neural systems Pub Date : 2024-12-01 Epub Date: 2024-07-25 DOI:10.1142/S0129065724500564
Xi Zheng, Yi Yang, Dehan Li, Yi Deng, Yuexiong Xie, Zhang Yi, Litai Ma, Lei Xu
{"title":"Precise Localization for Anatomo-Physiological Hallmarks of the Cervical Spine by Using Neural Memory Ordinary Differential Equation.","authors":"Xi Zheng, Yi Yang, Dehan Li, Yi Deng, Yuexiong Xie, Zhang Yi, Litai Ma, Lei Xu","doi":"10.1142/S0129065724500564","DOIUrl":null,"url":null,"abstract":"<p><p>In the evaluation of cervical spine disorders, precise positioning of anatomo-physiological hallmarks is fundamental for calculating diverse measurement metrics. Despite the fact that deep learning has achieved impressive results in the field of keypoint localization, there are still many limitations when facing medical image. First, these methods often encounter limitations when faced with the inherent variability in cervical spine datasets, arising from imaging factors. Second, predicting keypoints for only 4% of the entire X-ray image surface area poses a significant challenge. To tackle these issues, we propose a deep neural network architecture, NF-DEKR, specifically tailored for predicting keypoints in cervical spine physiological anatomy. Leveraging neural memory ordinary differential equation with its distinctive memory learning separation and convergence to a singular global attractor characteristic, our design effectively mitigates inherent data variability. Simultaneously, we introduce a Multi-Resolution Focus module to preprocess feature maps before entering the disentangled regression branch and the heatmap branch. Employing a differentiated strategy for feature maps of varying scales, this approach yields more accurate predictions of densely localized keypoints. We construct a medical dataset, SCUSpineXray, comprising X-ray images annotated by orthopedic specialists and conduct similar experiments on the publicly available UWSpineCT dataset. Experimental results demonstrate that compared to the baseline DEKR network, our proposed method enhances average precision by 2% to 3%, accompanied by a marginal increase in model parameters and the floating-point operations (FLOPs). The code (https://github.com/Zhxyi/NF-DEKR) is available.</p>","PeriodicalId":94052,"journal":{"name":"International journal of neural systems","volume":" ","pages":"2450056"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of neural systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0129065724500564","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/25 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the evaluation of cervical spine disorders, precise positioning of anatomo-physiological hallmarks is fundamental for calculating diverse measurement metrics. Despite the fact that deep learning has achieved impressive results in the field of keypoint localization, there are still many limitations when facing medical image. First, these methods often encounter limitations when faced with the inherent variability in cervical spine datasets, arising from imaging factors. Second, predicting keypoints for only 4% of the entire X-ray image surface area poses a significant challenge. To tackle these issues, we propose a deep neural network architecture, NF-DEKR, specifically tailored for predicting keypoints in cervical spine physiological anatomy. Leveraging neural memory ordinary differential equation with its distinctive memory learning separation and convergence to a singular global attractor characteristic, our design effectively mitigates inherent data variability. Simultaneously, we introduce a Multi-Resolution Focus module to preprocess feature maps before entering the disentangled regression branch and the heatmap branch. Employing a differentiated strategy for feature maps of varying scales, this approach yields more accurate predictions of densely localized keypoints. We construct a medical dataset, SCUSpineXray, comprising X-ray images annotated by orthopedic specialists and conduct similar experiments on the publicly available UWSpineCT dataset. Experimental results demonstrate that compared to the baseline DEKR network, our proposed method enhances average precision by 2% to 3%, accompanied by a marginal increase in model parameters and the floating-point operations (FLOPs). The code (https://github.com/Zhxyi/NF-DEKR) is available.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用神经记忆常微分方程精确定位颈椎的解剖生理特征
在评估颈椎疾病时,解剖生理特征的精确定位是计算各种测量指标的基础。尽管深度学习在关键点定位领域取得了令人瞩目的成果,但在面对医学影像时仍存在许多局限性。首先,面对颈椎数据集因成像因素而产生的固有变异,这些方法往往会遇到限制。其次,预测仅占整个 X 射线图像表面积 4% 的关键点也是一个巨大的挑战。为了解决这些问题,我们提出了一种深度神经网络架构 NF-DEKR,专门用于预测颈椎生理解剖中的关键点。利用神经记忆常微分方程的独特记忆学习分离和收敛到奇异全局吸引子的特性,我们的设计有效地缓解了固有的数据变异性。同时,我们引入了多分辨率聚焦模块,在进入分离回归分支和热图分支之前对特征图进行预处理。这种方法针对不同尺度的特征图采用了不同的策略,能更准确地预测密集定位的关键点。我们构建了一个医疗数据集 SCUSpineXray,其中包括由骨科专家注释的 X 光图像,并在公开可用的 UWSpineCT 数据集上进行了类似的实验。实验结果表明,与基线 DEKR 网络相比,我们提出的方法将平均精度提高了 2% 到 3%,同时模型参数和浮点运算 (FLOP) 略有增加。代码 (https://github.com/Zhxyi/NF-DEKR) 可供下载。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Hardware-Efficient Novelty-Aware Spike Sorting Approach for Brain-Implantable Microsystems. Author Index Volume 34 (2024). Precise Localization for Anatomo-Physiological Hallmarks of the Cervical Spine by Using Neural Memory Ordinary Differential Equation. The 2024 Hojjat Adeli Award for Outstanding Contributions in Neural Systems. Referring Image Segmentation with Multi-Modal Feature Interaction and Alignment Based on Convolutional Nonlinear Spiking Neural Membrane Systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1