{"title":"METTL16 regulates the mRNA stability of FBXO5 via m6A modification to facilitate the malignant behavior of breast cancer.","authors":"Runying Wang, Xingjie Gao, Luhan Xie, Jiaqi Lin, Yanying Ren","doi":"10.1186/s40170-024-00351-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>N6-methyladenosine (m6A) regulates the progression of breast cancer (BC). We aimed to investigate the action and mechanism involved of methyltransferase-like protein 16 (METTL16) in BC growth and metastasis.</p><p><strong>Methods: </strong>RT-qPCR, immunoblotting, and IHC were performed to test the levels of gene expression. CCK-8, clone formation, wound healing, and transwell assays were applied to measure the cell proliferation, migration, and invasion. m6A RNA methylation and MeRIP assay were utilized to confirm the m6A level of total RNA and FBXO5 mRNA. RIP was utilized to ascertain the interaction between METTL16 and FBXO5 mRNA. The in vivo murine subcutaneous tumor and metastasis model were constructed to further confirm the action of METTL16.</p><p><strong>Results: </strong>METTL16 was overexpression in BC cells and tissues. Inhibition of METTL16 restrained the growth and metastasis of BC. Furthermore, the METTL16 level and FBXO5 level was positively correlated in BC tissues, and METTL16 aggrandized the stability of FBXO5 mRNA depending on the m6A modification. Overexpression of FBXO5 antagonized the restrained function of METTL16 knockdown on BC cells' proliferation, migration, invasion, and EMT.</p><p><strong>Conclusion: </strong>METTL16 boosts the mRNA stability of FBXO5 via m6A modification to facilitate the malignant action of BC in vitro and in vivo, offering new latent targets for cure of BC.</p>","PeriodicalId":9418,"journal":{"name":"Cancer & Metabolism","volume":"12 1","pages":"22"},"PeriodicalIF":6.0000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11282785/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer & Metabolism","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40170-024-00351-5","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: N6-methyladenosine (m6A) regulates the progression of breast cancer (BC). We aimed to investigate the action and mechanism involved of methyltransferase-like protein 16 (METTL16) in BC growth and metastasis.
Methods: RT-qPCR, immunoblotting, and IHC were performed to test the levels of gene expression. CCK-8, clone formation, wound healing, and transwell assays were applied to measure the cell proliferation, migration, and invasion. m6A RNA methylation and MeRIP assay were utilized to confirm the m6A level of total RNA and FBXO5 mRNA. RIP was utilized to ascertain the interaction between METTL16 and FBXO5 mRNA. The in vivo murine subcutaneous tumor and metastasis model were constructed to further confirm the action of METTL16.
Results: METTL16 was overexpression in BC cells and tissues. Inhibition of METTL16 restrained the growth and metastasis of BC. Furthermore, the METTL16 level and FBXO5 level was positively correlated in BC tissues, and METTL16 aggrandized the stability of FBXO5 mRNA depending on the m6A modification. Overexpression of FBXO5 antagonized the restrained function of METTL16 knockdown on BC cells' proliferation, migration, invasion, and EMT.
Conclusion: METTL16 boosts the mRNA stability of FBXO5 via m6A modification to facilitate the malignant action of BC in vitro and in vivo, offering new latent targets for cure of BC.
期刊介绍:
Cancer & Metabolism welcomes studies on all aspects of the relationship between cancer and metabolism, including: -Molecular biology and genetics of cancer metabolism -Whole-body metabolism, including diabetes and obesity, in relation to cancer -Metabolomics in relation to cancer; -Metabolism-based imaging -Preclinical and clinical studies of metabolism-related cancer therapies.