Inonotus obliquus (Chaga) against HFD/STZ-induced glucolipid metabolism disorders and abnormal renal functions by regulating NOS-cGMP-PDE5 signaling pathway

IF 4 2区 医学 Q1 INTEGRATIVE & COMPLEMENTARY MEDICINE Chinese Journal of Natural Medicines Pub Date : 2024-07-01 DOI:10.1016/S1875-5364(24)60571-6
{"title":"Inonotus obliquus (Chaga) against HFD/STZ-induced glucolipid metabolism disorders and abnormal renal functions by regulating NOS-cGMP-PDE5 signaling pathway","authors":"","doi":"10.1016/S1875-5364(24)60571-6","DOIUrl":null,"url":null,"abstract":"<div><p>Our prior investigations have established that <em>Inonotus obliquus</em> (Chaga) possesses hypoglycemic effects. Persistent hyperglycemia is known to precipitate renal function abnormalities. The functionality of the kidneys is intricately linked to the levels of cyclic guanosine-3',5'-monophosphate (cGMP), which are influenced by the activities of nitric oxide synthase (NOS) and phosphodiesterase (PDE). Enhanced cGMP levels can be achieved either through the upregulation of NOS activity or the downregulation of PDE activity. The objective of the current study is to elucidate the effects of Chaga on disorders of glucolipid metabolism and renal abnormalities in rats with type 2 diabetes mellitus (T2DM), while concurrently examining the NOS-cGMP-PDE5 signaling pathway. A model of T2DM was developed in rats using a high-fat diet (HFD) combined with streptozotocin (STZ) administration, followed by treatment with Chaga extracts at doses of 50 and 100 mg·kg<sup>−1</sup> for eight weeks. The findings revealed that Chaga not only mitigated metabolic dysfunctions, evidenced by improvements in fasting blood glucose, total cholesterol, triglycerides, and insulin resistance, but also ameliorated renal function markers, including serum creatinine, urine creatinine (UCr), blood urea nitrogen, 24-h urinary protein, and estimated creatinine clearance. Additionally, enhancements in glomerular volume, GBM thickness, podocyte foot process width (FPW), and the mRNA and protein expressions of podocyte markers, such as nephrin and wilms tumor-1, were observed. Chaga was found to elevate cGMP levels in both serum and kidney tissues by increasing mRNA and protein expressions of renal endothelial NOS and neural NOS, while simultaneously reducing the expressions of renal inducible NOS and PDE5. In summary, Chaga counteracts HFD/STZ-induced glucolipid metabolism and renal function disturbances by modulating the NOS-cGMP-PDE5 signaling pathway. This research supports the potential application of Chaga in the clinical prevention and treatment of T2DM and diabetic nephropathy (DN), with cGMP serving as a potential therapeutic target.</p></div>","PeriodicalId":10002,"journal":{"name":"Chinese Journal of Natural Medicines","volume":null,"pages":null},"PeriodicalIF":4.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Natural Medicines","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1875536424605716","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INTEGRATIVE & COMPLEMENTARY MEDICINE","Score":null,"Total":0}
引用次数: 0

Abstract

Our prior investigations have established that Inonotus obliquus (Chaga) possesses hypoglycemic effects. Persistent hyperglycemia is known to precipitate renal function abnormalities. The functionality of the kidneys is intricately linked to the levels of cyclic guanosine-3',5'-monophosphate (cGMP), which are influenced by the activities of nitric oxide synthase (NOS) and phosphodiesterase (PDE). Enhanced cGMP levels can be achieved either through the upregulation of NOS activity or the downregulation of PDE activity. The objective of the current study is to elucidate the effects of Chaga on disorders of glucolipid metabolism and renal abnormalities in rats with type 2 diabetes mellitus (T2DM), while concurrently examining the NOS-cGMP-PDE5 signaling pathway. A model of T2DM was developed in rats using a high-fat diet (HFD) combined with streptozotocin (STZ) administration, followed by treatment with Chaga extracts at doses of 50 and 100 mg·kg−1 for eight weeks. The findings revealed that Chaga not only mitigated metabolic dysfunctions, evidenced by improvements in fasting blood glucose, total cholesterol, triglycerides, and insulin resistance, but also ameliorated renal function markers, including serum creatinine, urine creatinine (UCr), blood urea nitrogen, 24-h urinary protein, and estimated creatinine clearance. Additionally, enhancements in glomerular volume, GBM thickness, podocyte foot process width (FPW), and the mRNA and protein expressions of podocyte markers, such as nephrin and wilms tumor-1, were observed. Chaga was found to elevate cGMP levels in both serum and kidney tissues by increasing mRNA and protein expressions of renal endothelial NOS and neural NOS, while simultaneously reducing the expressions of renal inducible NOS and PDE5. In summary, Chaga counteracts HFD/STZ-induced glucolipid metabolism and renal function disturbances by modulating the NOS-cGMP-PDE5 signaling pathway. This research supports the potential application of Chaga in the clinical prevention and treatment of T2DM and diabetic nephropathy (DN), with cGMP serving as a potential therapeutic target.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过调节NOS-cGMP-PDE5信号通路防止高脂血症/STZ诱导的糖脂代谢紊乱和肾功能异常。
我们之前的研究已经证实,黑木耳(Chaga)具有降血糖作用。众所周知,持续的高血糖会导致肾功能异常。肾脏的功能与环鸟苷-3',5'-单磷酸(cGMP)的水平密切相关,而cGMP的水平受一氧化氮合酶(NOS)和磷酸二酯酶(PDE)活性的影响。提高 cGMP 水平可以通过上调 NOS 活性或下调 PDE 活性来实现。本研究旨在阐明 Chaga 对 2 型糖尿病(T2DM)大鼠糖脂代谢紊乱和肾功能异常的影响,同时研究 NOS-cGMP-PDE5 信号通路。研究人员利用高脂饮食(HFD)和链脲佐菌素(STZ)对大鼠进行了为期八周的T2DM模型试验,随后分别用50毫克和100毫克-千克-1剂量的Chaga提取物对大鼠进行了治疗。研究结果表明,Chaga不仅能缓解代谢功能障碍,如改善空腹血糖、总胆固醇、甘油三酯和胰岛素抵抗,还能改善肾功能指标,包括血清肌酐、尿肌酐(UCr)、血尿素氮、24小时尿蛋白和估计肌酐清除率。此外,还观察到肾小球体积、GBM 厚度、荚膜细胞足突宽度(FPW)以及荚膜细胞标志物(如肾素和威尔瘤-1)的 mRNA 和蛋白质表达均有所提高。研究发现,Chaga能通过增加肾脏内皮NOS和神经NOS的mRNA和蛋白表达,同时降低肾脏诱导型NOS和PDE5的表达,从而提高血清和肾脏组织中的cGMP水平。总之,Chaga通过调节NOS-cGMP-PDE5信号通路,抵消了HFD/STZ诱导的糖脂代谢和肾功能紊乱。这项研究支持了 Chaga 在临床上预防和治疗 T2DM 和糖尿病肾病(DN)的潜在应用,并将 cGMP 作为一个潜在的治疗靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chinese Journal of Natural Medicines
Chinese Journal of Natural Medicines INTEGRATIVE & COMPLEMENTARY MEDICINE-PHARMACOLOGY & PHARMACY
CiteScore
7.50
自引率
4.30%
发文量
2235
期刊介绍: The Chinese Journal of Natural Medicines (CJNM), founded and sponsored in May 2003 by China Pharmaceutical University and the Chinese Pharmaceutical Association, is devoted to communication among pharmaceutical and medical scientists interested in the advancement of Traditional Chinese Medicines (TCM). CJNM publishes articles relating to a broad spectrum of bioactive natural products, leading compounds and medicines derived from Traditional Chinese Medicines (TCM). Topics covered by the journal are: Resources of Traditional Chinese Medicines; Interaction and complexity of prescription; Natural Products Chemistry (including structure modification, semi-and total synthesis, bio-transformation); Pharmacology of natural products and prescription (including pharmacokinetics and toxicology); Pharmaceutics and Analytical Methods of natural products.
期刊最新文献
Advances in intelligent mass spectrometry data processing technology for in vivo analysis of natural medicines Chiral resolution of furofuran lignans and their derivatives from the stems of Dendrobium 'Sonia' Cyclocarysaponins A–J, dammarane-type triterpenoid glycosides from the leaves of Cyclocarya paliurus Four new diarylheptanoids and two new terpenoids from the fruits of Alpinia oxyphylla and their anti-inflammatory activities Highly oxygenated clerodane furanoditerpenoids from the leaves and twigs of Croton yunnanensis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1