YANG Yuhang , HUANG Jun , LI Xintian , LIN Renjing , WANG Xiaoyan , XIAO Ge , ZENG Juanni , WANG Zhenquan
{"title":"Periplaneta americana extract promotes infectious diabetic ulcers wound healing by downregulation of LINC01133/SLAMF9","authors":"YANG Yuhang , HUANG Jun , LI Xintian , LIN Renjing , WANG Xiaoyan , XIAO Ge , ZENG Juanni , WANG Zhenquan","doi":"10.1016/S1875-5364(24)60569-8","DOIUrl":null,"url":null,"abstract":"<div><p>Wound healing in diabetic ulcers remains a significant clinical challenge, primarily due to bacterial infection and impaired angiogenesis. <em>Periplaneta americana</em> extract (PAE) has been widely used to treat diabetic wounds, yet its underlying mechanisms are not fully understood. This study aimed to elucidate these mechanisms by analyzing long non-coding RNA (lncRNA) expressions in the wound tissues from diabetic anal fistula patients treated with or without PAE, using high-throughput sequencing. Peripheral blood monocytes from patients were differentiated into M0 macrophages with human macrophage colony-stimulating factor (hM-CSF) and subsequently polarized into M1 macrophages with lipopolysaccharide. The results indicated that <em>LINC01133</em> and <em>SLAMF9</em> were downregulated in wound tissues of patients treated with PAE. Furthermore, PAE suppressed M1 macrophage polarization and enhanced human umbilical vein endothelial cell (HUVEC) proliferation, migration, and angiogenesis. These effects were diminished when <em>LINC01133</em> or <em>SLAMF9</em> were overexpressed. Mechanistically, <em>LINC01133</em> was shown to upregulate <em>SLAMF9</em> through interaction with <em>ELAVL1</em>. Overexpression of <em>SLAMF9</em> reversed the effects of <em>LINC01133</em> silencing on macrophage polarization and HUVEC functions. In conclusion, PAE facilitates the healing of infected diabetic ulcers by downregulating the <em>LINC01133</em>/<em>SLAMF9</em> pathway.</p></div>","PeriodicalId":10002,"journal":{"name":"Chinese Journal of Natural Medicines","volume":"22 7","pages":"Pages 608-618"},"PeriodicalIF":4.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Natural Medicines","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1875536424605698","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INTEGRATIVE & COMPLEMENTARY MEDICINE","Score":null,"Total":0}
引用次数: 0
Abstract
Wound healing in diabetic ulcers remains a significant clinical challenge, primarily due to bacterial infection and impaired angiogenesis. Periplaneta americana extract (PAE) has been widely used to treat diabetic wounds, yet its underlying mechanisms are not fully understood. This study aimed to elucidate these mechanisms by analyzing long non-coding RNA (lncRNA) expressions in the wound tissues from diabetic anal fistula patients treated with or without PAE, using high-throughput sequencing. Peripheral blood monocytes from patients were differentiated into M0 macrophages with human macrophage colony-stimulating factor (hM-CSF) and subsequently polarized into M1 macrophages with lipopolysaccharide. The results indicated that LINC01133 and SLAMF9 were downregulated in wound tissues of patients treated with PAE. Furthermore, PAE suppressed M1 macrophage polarization and enhanced human umbilical vein endothelial cell (HUVEC) proliferation, migration, and angiogenesis. These effects were diminished when LINC01133 or SLAMF9 were overexpressed. Mechanistically, LINC01133 was shown to upregulate SLAMF9 through interaction with ELAVL1. Overexpression of SLAMF9 reversed the effects of LINC01133 silencing on macrophage polarization and HUVEC functions. In conclusion, PAE facilitates the healing of infected diabetic ulcers by downregulating the LINC01133/SLAMF9 pathway.
期刊介绍:
The Chinese Journal of Natural Medicines (CJNM), founded and sponsored in May 2003 by China Pharmaceutical University and the Chinese Pharmaceutical Association, is devoted to communication among pharmaceutical and medical scientists interested in the advancement of Traditional Chinese Medicines (TCM). CJNM publishes articles relating to a broad spectrum of bioactive natural products, leading compounds and medicines derived from Traditional Chinese Medicines (TCM).
Topics covered by the journal are: Resources of Traditional Chinese Medicines; Interaction and complexity of prescription; Natural Products Chemistry (including structure modification, semi-and total synthesis, bio-transformation); Pharmacology of natural products and prescription (including pharmacokinetics and toxicology); Pharmaceutics and Analytical Methods of natural products.