{"title":"Diffusing on Two Levels and Optimizing for Multiple Properties: A Novel Approach to Generating Molecules With Desirable Properties","authors":"Siyuan Guo;Jihong Guan;Shuigeng Zhou","doi":"10.1109/TCBB.2024.3434461","DOIUrl":null,"url":null,"abstract":"In the past decade, Artificial Intelligence (AI) driven drug design and discovery has been a hot research topic in the AI area, where an important branch is molecule generation by generative models, from GAN-based models and VAE-based models to the latest diffusion-based models. However, most existing models pursue mainly the basic properties like \n<italic>validity</i>\n and \n<italic>uniqueness</i>\n of the generated molecules, a few go further to explicitly optimize one single important molecular property (e.g. QED or PlogP), which makes most generated molecules little usefulness in practice. In this paper, we present a novel approach to generating molecules with desirable properties, which expands the diffusion model framework with multiple innovative designs. The novelty is two-fold. On the one hand, considering that the structures of molecules are complex and diverse, and molecular properties are usually determined by some substructures (e.g. pharmacophores), we propose to perform diffusion on two structural levels: molecules and molecular fragments respectively, with which a mixed Gaussian distribution is obtained for the reverse diffusion process. To get desirable molecular fragments, we develop a novel \n<italic>electronic effect</i>\n based fragmentation method. On the other hand, we introduce two ways to explicitly optimize multiple molecular properties under the diffusion model framework. First, as potential drug molecules must be chemically valid, we optimize molecular validity by an energy-guidance function. Second, since potential drug molecules should be desirable in various properties, we employ a multi-objective mechanism to optimize multiple molecular properties simultaneously. Extensive experiments with two benchmark datasets QM9 and ZINC250 k show that the molecules generated by our proposed method have better \n<italic>validity, uniqueness, novelty, Fréchet ChemNet Distance (FCD), QED, and PlogP</i>\n than those generated by current SOTA models.","PeriodicalId":13344,"journal":{"name":"IEEE/ACM Transactions on Computational Biology and Bioinformatics","volume":"21 6","pages":"2050-2063"},"PeriodicalIF":3.6000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE/ACM Transactions on Computational Biology and Bioinformatics","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10612764/","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
In the past decade, Artificial Intelligence (AI) driven drug design and discovery has been a hot research topic in the AI area, where an important branch is molecule generation by generative models, from GAN-based models and VAE-based models to the latest diffusion-based models. However, most existing models pursue mainly the basic properties like
validity
and
uniqueness
of the generated molecules, a few go further to explicitly optimize one single important molecular property (e.g. QED or PlogP), which makes most generated molecules little usefulness in practice. In this paper, we present a novel approach to generating molecules with desirable properties, which expands the diffusion model framework with multiple innovative designs. The novelty is two-fold. On the one hand, considering that the structures of molecules are complex and diverse, and molecular properties are usually determined by some substructures (e.g. pharmacophores), we propose to perform diffusion on two structural levels: molecules and molecular fragments respectively, with which a mixed Gaussian distribution is obtained for the reverse diffusion process. To get desirable molecular fragments, we develop a novel
electronic effect
based fragmentation method. On the other hand, we introduce two ways to explicitly optimize multiple molecular properties under the diffusion model framework. First, as potential drug molecules must be chemically valid, we optimize molecular validity by an energy-guidance function. Second, since potential drug molecules should be desirable in various properties, we employ a multi-objective mechanism to optimize multiple molecular properties simultaneously. Extensive experiments with two benchmark datasets QM9 and ZINC250 k show that the molecules generated by our proposed method have better
validity, uniqueness, novelty, Fréchet ChemNet Distance (FCD), QED, and PlogP
than those generated by current SOTA models.
期刊介绍:
IEEE/ACM Transactions on Computational Biology and Bioinformatics emphasizes the algorithmic, mathematical, statistical and computational methods that are central in bioinformatics and computational biology; the development and testing of effective computer programs in bioinformatics; the development of biological databases; and important biological results that are obtained from the use of these methods, programs and databases; the emerging field of Systems Biology, where many forms of data are used to create a computer-based model of a complex biological system