{"title":"HGLA: Biomolecular Interaction Prediction based on Mixed High-Order Graph Convolution with Filter Network via LSTM and Channel Attention.","authors":"Zhen Zhang, Zhaohong Deng, Ruibo Li, Wei Zhang, Qiongdan Lou, Kup-Sze Choi, Shitong Wang","doi":"10.1109/TCBB.2024.3434399","DOIUrl":null,"url":null,"abstract":"<p><p>Predicting biomolecular interactions is significant for understanding biological systems. Most existing methods for link prediction are based on graph convolution. Although graph convolution methods are advantageous in extracting structure information of biomolecular interactions, two key challenges still remain. One is how to consider both the immediate and highorder neighbors. Another is how to reduce noise when aggregating high-order neighbors. To address these challenges, we propose a novel method, called mixed high-order graph convolution with filter network via LSTM and channel attention (HGLA), to predict biomolecular interactions. Firstly, the basic and high-order features are extracted respectively through the traditional graph convolutional network (GCN) and the two-layer Higher-Order Graph Convolutional Architectures via Sparsified Neighborhood Mixing (MixHop). Secondly, these features are mixed and input into the filter network composed of LayerNorm, SENet and LSTM to generate filtered features, which are concatenated and used for link prediction. The advantages of HGLA are: 1) HGLA processes high-order features separately, rather than simply concatenating them; 2) HGLA better balances the basic features and high-order features; 3) HGLA effectively filters the noise from high-order neighbors. It outperforms state-ofthe-art networks on four benchmark datasets. The codes are available at https://github.com/zznb123/HGLA.</p>","PeriodicalId":13344,"journal":{"name":"IEEE/ACM Transactions on Computational Biology and Bioinformatics","volume":"PP ","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE/ACM Transactions on Computational Biology and Bioinformatics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/TCBB.2024.3434399","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Predicting biomolecular interactions is significant for understanding biological systems. Most existing methods for link prediction are based on graph convolution. Although graph convolution methods are advantageous in extracting structure information of biomolecular interactions, two key challenges still remain. One is how to consider both the immediate and highorder neighbors. Another is how to reduce noise when aggregating high-order neighbors. To address these challenges, we propose a novel method, called mixed high-order graph convolution with filter network via LSTM and channel attention (HGLA), to predict biomolecular interactions. Firstly, the basic and high-order features are extracted respectively through the traditional graph convolutional network (GCN) and the two-layer Higher-Order Graph Convolutional Architectures via Sparsified Neighborhood Mixing (MixHop). Secondly, these features are mixed and input into the filter network composed of LayerNorm, SENet and LSTM to generate filtered features, which are concatenated and used for link prediction. The advantages of HGLA are: 1) HGLA processes high-order features separately, rather than simply concatenating them; 2) HGLA better balances the basic features and high-order features; 3) HGLA effectively filters the noise from high-order neighbors. It outperforms state-ofthe-art networks on four benchmark datasets. The codes are available at https://github.com/zznb123/HGLA.
期刊介绍:
IEEE/ACM Transactions on Computational Biology and Bioinformatics emphasizes the algorithmic, mathematical, statistical and computational methods that are central in bioinformatics and computational biology; the development and testing of effective computer programs in bioinformatics; the development of biological databases; and important biological results that are obtained from the use of these methods, programs and databases; the emerging field of Systems Biology, where many forms of data are used to create a computer-based model of a complex biological system