Free-breathing three-dimensional simultaneous myocardial T1 and T2 mapping based on multi-parametric SAturation-recovery and Variable-flip-Angle.

IF 4.2 1区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Journal of Cardiovascular Magnetic Resonance Pub Date : 2024-07-24 DOI:10.1016/j.jocmr.2024.101065
Dongyue Si, Rui Guo, Lan Cheng, Xiangchuang Kong, Daniel A Herzka, Haiyan Ding
{"title":"Free-breathing three-dimensional simultaneous myocardial T<sub>1</sub> and T<sub>2</sub> mapping based on multi-parametric SAturation-recovery and Variable-flip-Angle.","authors":"Dongyue Si, Rui Guo, Lan Cheng, Xiangchuang Kong, Daniel A Herzka, Haiyan Ding","doi":"10.1016/j.jocmr.2024.101065","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Quantitative myocardial tissue characterization with T<sub>1</sub> and T<sub>2</sub> parametric mapping can provide an accurate and complete assessment of tissue abnormalities across a broad range of cardiomyopathies. However, current clinical T<sub>1</sub> and T<sub>2</sub> mapping tools rely predominantly on two-dimensional (2D) breath-hold sequences. Clinical adoption of three-dimensional (3D) techniques is limited by long scan duration. The aim of this study is to develop and validate a time-efficient 3D free-breathing simultaneous T<sub>1</sub> and T<sub>2</sub> mapping sequence using multi-parametric SAturation-recovery and Variable-flip-Angle (mSAVA).</p><p><strong>Methods: </strong>mSAVA acquires four volumes for simultaneous whole-heart T<sub>1</sub> and T<sub>2</sub> mapping. We validated mSAVA using simulations, phantoms, and in-vivo experiments at 3T in 11 healthy subjects and 11 patients with diverse cardiomyopathies. T<sub>1</sub> and T<sub>2</sub> values by mSAVA were compared with modified Look-Locker inversion recovery (MOLLI) and gradient and spin echo (GraSE), respectively. The clinical performance of mSAVA was evaluated against late gadolinium enhancement (LGE) imaging in patients.</p><p><strong>Results: </strong>Phantom T<sub>1</sub> and T<sub>2</sub> by mSAVA showed a strong correlation to reference sequences (R<sup>2</sup> = 0.98 and 0.99). In-vivo imaging with an imaging resolution of 1.5 × 1.5 × 8 mm<sup>3</sup> could be achieved. Myocardial T<sub>1</sub> and T<sub>2</sub> of healthy subjects by mSAVA were 1310 ± 46 and 44.6 ± 2.0 ms, respectively, with T<sub>1</sub> standard deviation higher than MOLLI (105 ± 12 vs 60 ± 16 ms) and T<sub>2</sub> standard deviation lower than GraSE (4.5 ± 0.8 vs 5.5 ± 1.0 ms). mSAVA T<sub>1</sub> and T<sub>2</sub> maps presented consistent findings in patients undergoing LGE. Myocardial T<sub>1</sub> and T<sub>2</sub> of all patients by mSAVA were 1421 ± 79 and 47.2 ± 3.3 ms, respectively.</p><p><strong>Conclusion: </strong>mSAVA is a fast 3D technique promising for clinical whole-heart T<sub>1</sub> and T<sub>2</sub> mapping.</p>","PeriodicalId":15221,"journal":{"name":"Journal of Cardiovascular Magnetic Resonance","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11347066/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cardiovascular Magnetic Resonance","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.jocmr.2024.101065","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Quantitative myocardial tissue characterization with T1 and T2 parametric mapping can provide an accurate and complete assessment of tissue abnormalities across a broad range of cardiomyopathies. However, current clinical T1 and T2 mapping tools rely predominantly on two-dimensional (2D) breath-hold sequences. Clinical adoption of three-dimensional (3D) techniques is limited by long scan duration. The aim of this study is to develop and validate a time-efficient 3D free-breathing simultaneous T1 and T2 mapping sequence using multi-parametric SAturation-recovery and Variable-flip-Angle (mSAVA).

Methods: mSAVA acquires four volumes for simultaneous whole-heart T1 and T2 mapping. We validated mSAVA using simulations, phantoms, and in-vivo experiments at 3T in 11 healthy subjects and 11 patients with diverse cardiomyopathies. T1 and T2 values by mSAVA were compared with modified Look-Locker inversion recovery (MOLLI) and gradient and spin echo (GraSE), respectively. The clinical performance of mSAVA was evaluated against late gadolinium enhancement (LGE) imaging in patients.

Results: Phantom T1 and T2 by mSAVA showed a strong correlation to reference sequences (R2 = 0.98 and 0.99). In-vivo imaging with an imaging resolution of 1.5 × 1.5 × 8 mm3 could be achieved. Myocardial T1 and T2 of healthy subjects by mSAVA were 1310 ± 46 and 44.6 ± 2.0 ms, respectively, with T1 standard deviation higher than MOLLI (105 ± 12 vs 60 ± 16 ms) and T2 standard deviation lower than GraSE (4.5 ± 0.8 vs 5.5 ± 1.0 ms). mSAVA T1 and T2 maps presented consistent findings in patients undergoing LGE. Myocardial T1 and T2 of all patients by mSAVA were 1421 ± 79 and 47.2 ± 3.3 ms, respectively.

Conclusion: mSAVA is a fast 3D technique promising for clinical whole-heart T1 and T2 mapping.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于多参数饱和恢复和可变翻转角度(mSAVA)的自由呼吸三维同步心肌 T1 和 T2 图谱。
背景:利用 T1 和 T2 参数图谱对心肌组织进行定量表征,可准确、全面地评估各种心肌病的组织异常。然而,目前的临床 T1 和 T2 映像学工具主要依赖于二维屏气序列。由于扫描时间较长,三维技术的临床应用受到限制。本研究的目的是利用多参数饱和恢复和可变翻转角度(mSAVA),开发并验证一种省时的三维自由呼吸同时 T1 和 T2 绘图序列。我们在 11 名健康受试者和 11 名不同心肌病患者中使用模拟、模型和 3T 体外实验对 mSAVA 进行了验证。mSAVA 的 T1 和 T2 值分别与改良 Look-Locker 反转恢复(MOLLI)和梯度自旋回波(GraSE)进行了比较。还评估了 mSAVA 与患者晚期钆增强(LGE)成像的临床表现:通过 mSAVA 进行的幻影 T1 和 T2 与参考序列显示出很强的相关性(R2=0.98 和 0.99)。体内成像的成像分辨率可达 1.5×1.5×8 mm3。健康受试者的心肌T1和T2分别为1310±46和44.6±2.0ms,T1标准偏差高于MOLLI(105±12 vs. 60±16ms),T2标准偏差低于GraSE(4.5±0.8 vs. 5.5±1.0ms)。结论:mSAVA 是一种快速三维技术,有望用于临床全心 T1 和 T2 地图绘制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
10.90
自引率
12.50%
发文量
61
审稿时长
6-12 weeks
期刊介绍: Journal of Cardiovascular Magnetic Resonance (JCMR) publishes high-quality articles on all aspects of basic, translational and clinical research on the design, development, manufacture, and evaluation of cardiovascular magnetic resonance (CMR) methods applied to the cardiovascular system. Topical areas include, but are not limited to: New applications of magnetic resonance to improve the diagnostic strategies, risk stratification, characterization and management of diseases affecting the cardiovascular system. New methods to enhance or accelerate image acquisition and data analysis. Results of multicenter, or larger single-center studies that provide insight into the utility of CMR. Basic biological perceptions derived by CMR methods.
期刊最新文献
Design and Rationale of MYOFLAME-19 RCT: MYOcardial protection to reduce inFLAMmatory heart disease due to COVID-19 Infection using CMR Endpoints. Association Between Subclinical Right Ventricular Alterations and Aerobic Exercise Capacity in Type 2 Diabetes. Biventricular longitudinal strain analysis using CMR feature-tracking: prognostic value in Eisenmenger syndrome. Interstitial Fibrosis and Arrhythmic Mitral Valve Prolapse: Unravelling Sex-Based Differences. Safety of dobutamine stress cardiovascular magnetic resonance in patients with prior coronary artery bypass grafting.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1