{"title":"Simulating left atrial arrhythmias with an interactive N-body model","authors":"Bryant Wyatt , Gavin McIntosh , Avery Campbell , Melanie Little , Leah Rogers , Brandon Wyatt","doi":"10.1016/j.jelectrocard.2024.153762","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Heart disease and strokes are leading global killers. While atrial arrhythmias are not deadly by themselves, they can disrupt blood flow in the heart, causing blood clots. These clots can travel to the brain, causing strokes, or to the coronary arteries, causing heart attacks. Additionally, prolonged periods of elevated heart rates can lead to structural and functional changes in the heart, ultimately leading to heart failure if untreated. The left atrium, with its more complex topology, is the primary site for complex arrhythmias. Much remains unknown about the causes of these arrhythmias, and computer modeling is employed to study them.</p></div><div><h3>Methods</h3><p>We use N-body modeling techniques and parallel computing to build an interactive model of the left atrium. Through user input, individual muscle attributes can be adjusted, and ectopic events can be placed to induce arrhythmias in the model. Users can test ablation scenarios to determine the most effective way to eliminate these arrhythmias.</p></div><div><h3>Results</h3><p>We set up muscle conditions that either spontaneously generate common arrhythmias or, with a properly timed and located ectopic event, induce an arrhythmia. These arrhythmias were successfully eliminated with simulated ablation.</p></div><div><h3>Conclusions</h3><p>We believe the model could be useful to doctors, researchers, and medical students studying left atrial arrhythmias.</p></div>","PeriodicalId":15606,"journal":{"name":"Journal of electrocardiology","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of electrocardiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022073624002322","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Heart disease and strokes are leading global killers. While atrial arrhythmias are not deadly by themselves, they can disrupt blood flow in the heart, causing blood clots. These clots can travel to the brain, causing strokes, or to the coronary arteries, causing heart attacks. Additionally, prolonged periods of elevated heart rates can lead to structural and functional changes in the heart, ultimately leading to heart failure if untreated. The left atrium, with its more complex topology, is the primary site for complex arrhythmias. Much remains unknown about the causes of these arrhythmias, and computer modeling is employed to study them.
Methods
We use N-body modeling techniques and parallel computing to build an interactive model of the left atrium. Through user input, individual muscle attributes can be adjusted, and ectopic events can be placed to induce arrhythmias in the model. Users can test ablation scenarios to determine the most effective way to eliminate these arrhythmias.
Results
We set up muscle conditions that either spontaneously generate common arrhythmias or, with a properly timed and located ectopic event, induce an arrhythmia. These arrhythmias were successfully eliminated with simulated ablation.
Conclusions
We believe the model could be useful to doctors, researchers, and medical students studying left atrial arrhythmias.
期刊介绍:
The Journal of Electrocardiology is devoted exclusively to clinical and experimental studies of the electrical activities of the heart. It seeks to contribute significantly to the accuracy of diagnosis and prognosis and the effective treatment, prevention, or delay of heart disease. Editorial contents include electrocardiography, vectorcardiography, arrhythmias, membrane action potential, cardiac pacing, monitoring defibrillation, instrumentation, drug effects, and computer applications.