{"title":"Design and assessment of a double antigen indirect ELISA for lumpy skin disease surveillance in India","authors":"Nabaneeta Smaraki , Sanchay Kumar Biswas , Sonalika Mahajan , Vivek Gairola , Sabahat Gulzar , Poloju Deepa , Kirtika Sharma , Harsh Rajeshbhai Jogi , Sushmita Nautiyal , Ragini Mishra , Sukdeb Nandi , Ravikant Agrawal , K. Mahendran , Karam Pal Singh , Gaurav Kumar Sharma","doi":"10.1016/j.jviromet.2024.114998","DOIUrl":null,"url":null,"abstract":"<div><p>Lumpy skin disease (LSD), caused by the lumpy skin disease virus of the genus <em>Capripoxvirus</em>, is rapidly emerging across most countries in Asia. Recently, LSD has been linked to very high morbidity and mortality rates. Until 2019, India remained free of LSD, resulting in a lack of locally developed diagnostic kits, biologicals, and other tools necessary for managing the disease in a country with such a large livestock population. Therefore, this study aimed to design and validate an indigenous and cost-effective in-house ELISA for large-scale screening of cattle samples for antibodies to LSDV. The viral major open reading frames ORF 095 and ORF 103 encoding virion core proteins were expressed in a prokaryotic system and the recombinant antigen cocktail was used for optimization and validation of an indirect ELISA (iELISA). The calculated relative diagnostic sensitivity and diagnostic specificity of the iELISA were 96.6 % and 95.1 %, respectively at the cut-off percent positivity (PP≥50 %). The in-house designed double-antigen iELISA was found effective to investigate the seroprevalence of LSDV in various geographical regions of India.</p></div>","PeriodicalId":17663,"journal":{"name":"Journal of virological methods","volume":"329 ","pages":"Article 114998"},"PeriodicalIF":2.2000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of virological methods","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166093424001228","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Lumpy skin disease (LSD), caused by the lumpy skin disease virus of the genus Capripoxvirus, is rapidly emerging across most countries in Asia. Recently, LSD has been linked to very high morbidity and mortality rates. Until 2019, India remained free of LSD, resulting in a lack of locally developed diagnostic kits, biologicals, and other tools necessary for managing the disease in a country with such a large livestock population. Therefore, this study aimed to design and validate an indigenous and cost-effective in-house ELISA for large-scale screening of cattle samples for antibodies to LSDV. The viral major open reading frames ORF 095 and ORF 103 encoding virion core proteins were expressed in a prokaryotic system and the recombinant antigen cocktail was used for optimization and validation of an indirect ELISA (iELISA). The calculated relative diagnostic sensitivity and diagnostic specificity of the iELISA were 96.6 % and 95.1 %, respectively at the cut-off percent positivity (PP≥50 %). The in-house designed double-antigen iELISA was found effective to investigate the seroprevalence of LSDV in various geographical regions of India.
期刊介绍:
The Journal of Virological Methods focuses on original, high quality research papers that describe novel and comprehensively tested methods which enhance human, animal, plant, bacterial or environmental virology and prions research and discovery.
The methods may include, but not limited to, the study of:
Viral components and morphology-
Virus isolation, propagation and development of viral vectors-
Viral pathogenesis, oncogenesis, vaccines and antivirals-
Virus replication, host-pathogen interactions and responses-
Virus transmission, prevention, control and treatment-
Viral metagenomics and virome-
Virus ecology, adaption and evolution-
Applied virology such as nanotechnology-
Viral diagnosis with novelty and comprehensive evaluation.
We seek articles, systematic reviews, meta-analyses and laboratory protocols that include comprehensive technical details with statistical confirmations that provide validations against current best practice, international standards or quality assurance programs and which advance knowledge in virology leading to improved medical, veterinary or agricultural practices and management.