Jing Liang , Nan Zhang , Ge Li , Xiang Zhou , Zhe Li , Zhaoying Zhan , Jingyuan Fan , Canbin Zheng , Qingtang Zhu , Jian Qi , Liwei Yan
{"title":"Piezo1 promotes peripheral nerve fibrotic scar formation through Schwann cell senescence","authors":"Jing Liang , Nan Zhang , Ge Li , Xiang Zhou , Zhe Li , Zhaoying Zhan , Jingyuan Fan , Canbin Zheng , Qingtang Zhu , Jian Qi , Liwei Yan","doi":"10.1016/j.neulet.2024.137916","DOIUrl":null,"url":null,"abstract":"<div><p>After peripheral nerve injury (PNI), the long-term healing process at the injury site involves a progressive accumulation of collagen fibers and the development of localized scar tissue. Excessive formation of scar tissue within nerves hinders the process of nerve repair. In this study, we demonstrate that scar formation following nerve injury induces alterations in the local physical microenvironment, specifically an increase in nerve stiffness. Recent research has indicated heightened expression of Piezo1 in Schwann cells (SCs). Our findings also indicate Piezo1 expression in SCs and its association with suppressed proliferation and migration. Transcriptomic data suggests that activation of Piezo1 results in elevated expression of senescence-associated genes. GO enrichment analysis reveals upregulation of the TGF-β pathway. Overall, our study highlights the potential for Piezo1-induced signaling to regulate SC senescence and its potential significance in the pathophysiology of fibrotic scar formation surrounding peripheral nerves.</p></div>","PeriodicalId":19290,"journal":{"name":"Neuroscience Letters","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0304394024002945/pdfft?md5=32848c9f05fe34a708ec23e9a22316da&pid=1-s2.0-S0304394024002945-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience Letters","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304394024002945","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
After peripheral nerve injury (PNI), the long-term healing process at the injury site involves a progressive accumulation of collagen fibers and the development of localized scar tissue. Excessive formation of scar tissue within nerves hinders the process of nerve repair. In this study, we demonstrate that scar formation following nerve injury induces alterations in the local physical microenvironment, specifically an increase in nerve stiffness. Recent research has indicated heightened expression of Piezo1 in Schwann cells (SCs). Our findings also indicate Piezo1 expression in SCs and its association with suppressed proliferation and migration. Transcriptomic data suggests that activation of Piezo1 results in elevated expression of senescence-associated genes. GO enrichment analysis reveals upregulation of the TGF-β pathway. Overall, our study highlights the potential for Piezo1-induced signaling to regulate SC senescence and its potential significance in the pathophysiology of fibrotic scar formation surrounding peripheral nerves.
期刊介绍:
Neuroscience Letters is devoted to the rapid publication of short, high-quality papers of interest to the broad community of neuroscientists. Only papers which will make a significant addition to the literature in the field will be published. Papers in all areas of neuroscience - molecular, cellular, developmental, systems, behavioral and cognitive, as well as computational - will be considered for publication. Submission of laboratory investigations that shed light on disease mechanisms is encouraged. Special Issues, edited by Guest Editors to cover new and rapidly-moving areas, will include invited mini-reviews. Occasional mini-reviews in especially timely areas will be considered for publication, without invitation, outside of Special Issues; these un-solicited mini-reviews can be submitted without invitation but must be of very high quality. Clinical studies will also be published if they provide new information about organization or actions of the nervous system, or provide new insights into the neurobiology of disease. NSL does not publish case reports.