Piezo1 promotes peripheral nerve fibrotic scar formation through Schwann cell senescence

IF 2.5 4区 医学 Q3 NEUROSCIENCES Neuroscience Letters Pub Date : 2024-08-10 DOI:10.1016/j.neulet.2024.137916
Jing Liang , Nan Zhang , Ge Li , Xiang Zhou , Zhe Li , Zhaoying Zhan , Jingyuan Fan , Canbin Zheng , Qingtang Zhu , Jian Qi , Liwei Yan
{"title":"Piezo1 promotes peripheral nerve fibrotic scar formation through Schwann cell senescence","authors":"Jing Liang ,&nbsp;Nan Zhang ,&nbsp;Ge Li ,&nbsp;Xiang Zhou ,&nbsp;Zhe Li ,&nbsp;Zhaoying Zhan ,&nbsp;Jingyuan Fan ,&nbsp;Canbin Zheng ,&nbsp;Qingtang Zhu ,&nbsp;Jian Qi ,&nbsp;Liwei Yan","doi":"10.1016/j.neulet.2024.137916","DOIUrl":null,"url":null,"abstract":"<div><p>After peripheral nerve injury (PNI), the long-term healing process at the injury site involves a progressive accumulation of collagen fibers and the development of localized scar tissue. Excessive formation of scar tissue within nerves hinders the process of nerve repair. In this study, we demonstrate that scar formation following nerve injury induces alterations in the local physical microenvironment, specifically an increase in nerve stiffness. Recent research has indicated heightened expression of Piezo1 in Schwann cells (SCs). Our findings also indicate Piezo1 expression in SCs and its association with suppressed proliferation and migration. Transcriptomic data suggests that activation of Piezo1 results in elevated expression of senescence-associated genes. GO enrichment analysis reveals upregulation of the TGF-β pathway. Overall, our study highlights the potential for Piezo1-induced signaling to regulate SC senescence and its potential significance in the pathophysiology of fibrotic scar formation surrounding peripheral nerves.</p></div>","PeriodicalId":19290,"journal":{"name":"Neuroscience Letters","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0304394024002945/pdfft?md5=32848c9f05fe34a708ec23e9a22316da&pid=1-s2.0-S0304394024002945-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience Letters","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304394024002945","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

After peripheral nerve injury (PNI), the long-term healing process at the injury site involves a progressive accumulation of collagen fibers and the development of localized scar tissue. Excessive formation of scar tissue within nerves hinders the process of nerve repair. In this study, we demonstrate that scar formation following nerve injury induces alterations in the local physical microenvironment, specifically an increase in nerve stiffness. Recent research has indicated heightened expression of Piezo1 in Schwann cells (SCs). Our findings also indicate Piezo1 expression in SCs and its association with suppressed proliferation and migration. Transcriptomic data suggests that activation of Piezo1 results in elevated expression of senescence-associated genes. GO enrichment analysis reveals upregulation of the TGF-β pathway. Overall, our study highlights the potential for Piezo1-induced signaling to regulate SC senescence and its potential significance in the pathophysiology of fibrotic scar formation surrounding peripheral nerves.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Piezo1 通过许旺细胞衰老促进周围神经纤维化瘢痕的形成。
周围神经损伤(PNI)后,损伤部位的长期愈合过程包括胶原纤维的逐渐积累和局部瘢痕组织的形成。神经内瘢痕组织的过度形成会阻碍神经修复过程。在这项研究中,我们证明了神经损伤后瘢痕的形成会引起局部物理微环境的改变,特别是神经僵硬度的增加。最近的研究表明,许旺细胞(SCs)中 Piezo1 的表达增加。我们的研究结果也表明了 Piezo1 在许旺细胞中的表达及其与增殖和迁移受抑制的关系。转录组数据表明,Piezo1 的激活会导致衰老相关基因的表达升高。GO富集分析显示了TGF-β通路的上调。总之,我们的研究强调了 Piezo1 诱导的信号传导调节 SC 衰老的潜力及其在周围神经周围纤维化瘢痕形成的病理生理学中的潜在意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Neuroscience Letters
Neuroscience Letters 医学-神经科学
CiteScore
5.20
自引率
0.00%
发文量
408
审稿时长
50 days
期刊介绍: Neuroscience Letters is devoted to the rapid publication of short, high-quality papers of interest to the broad community of neuroscientists. Only papers which will make a significant addition to the literature in the field will be published. Papers in all areas of neuroscience - molecular, cellular, developmental, systems, behavioral and cognitive, as well as computational - will be considered for publication. Submission of laboratory investigations that shed light on disease mechanisms is encouraged. Special Issues, edited by Guest Editors to cover new and rapidly-moving areas, will include invited mini-reviews. Occasional mini-reviews in especially timely areas will be considered for publication, without invitation, outside of Special Issues; these un-solicited mini-reviews can be submitted without invitation but must be of very high quality. Clinical studies will also be published if they provide new information about organization or actions of the nervous system, or provide new insights into the neurobiology of disease. NSL does not publish case reports.
期刊最新文献
Effects of Type II Diabetes on upper extremity muscle characteristics in older adults Central administration of galanin-like peptide (GALP) causes short-term orexigenic effects in broilers: Mediatory role of NPY1 and D1 receptors. Cinnamaldehyde induces a TRPA1-mediated nociceptive behavior in planarians. Fatty acid-binding protein 7 gene deletion promotes decreases in brain cannabinoid type 1 receptor binding. Optimized primary dorsal root ganglion cell culture protocol for reliable K+ current patch-clamp recordings
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1