Éva Bernadett Bényei, Rahan Rudland Nazeer, Isabel Askenasy, Leonardo Mancini, Pok-Man Ho, Gordon A C Sivarajan, Jemima E V Swain, Martin Welch
{"title":"The past, present and future of polymicrobial infection research: Modelling, eavesdropping, terraforming and other stories.","authors":"Éva Bernadett Bényei, Rahan Rudland Nazeer, Isabel Askenasy, Leonardo Mancini, Pok-Man Ho, Gordon A C Sivarajan, Jemima E V Swain, Martin Welch","doi":"10.1016/bs.ampbs.2024.04.002","DOIUrl":null,"url":null,"abstract":"<p><p>Over the last two centuries, great advances have been made in microbiology as a discipline. Much of this progress has come about as a consequence of studying the growth and physiology of individual microbial species in well-defined laboratory media; so-called \"axenic growth\". However, in the real world, microbes rarely live in such \"splendid isolation\" (to paraphrase Foster) and more often-than-not, share the niche with a plethora of co-habitants. The resulting interactions between species (and even between kingdoms) are only very poorly understood, both on a theoretical and experimental level. Nevertheless, the last few years have seen significant progress, and in this review, we assess the importance of polymicrobial infections, and show how improved experimental traction is advancing our understanding of these. A particular focus is on developments that are allowing us to capture the key features of polymicrobial infection scenarios, especially as those associated with the human airways (both healthy and diseased).</p>","PeriodicalId":519928,"journal":{"name":"Advances in microbial physiology","volume":"85 ","pages":"259-323"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in microbial physiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/bs.ampbs.2024.04.002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/22 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Over the last two centuries, great advances have been made in microbiology as a discipline. Much of this progress has come about as a consequence of studying the growth and physiology of individual microbial species in well-defined laboratory media; so-called "axenic growth". However, in the real world, microbes rarely live in such "splendid isolation" (to paraphrase Foster) and more often-than-not, share the niche with a plethora of co-habitants. The resulting interactions between species (and even between kingdoms) are only very poorly understood, both on a theoretical and experimental level. Nevertheless, the last few years have seen significant progress, and in this review, we assess the importance of polymicrobial infections, and show how improved experimental traction is advancing our understanding of these. A particular focus is on developments that are allowing us to capture the key features of polymicrobial infection scenarios, especially as those associated with the human airways (both healthy and diseased).