Martin Teuscher, Aurélien Barrau, Killian Martineau
{"title":"Elementary considerations on gravitational waves from hyperbolic encounters","authors":"Martin Teuscher, Aurélien Barrau, Killian Martineau","doi":"10.1007/s10714-024-03276-y","DOIUrl":null,"url":null,"abstract":"<div><p>We examine the main properties of gravitational waves (GWs) emitted by transient hyperbolic encounters of black holes. We begin by building the set of basic variables most relevant to setting our problem. After exposing the ranges of masses and eccentricities accessible at a given GW frequency, we analyze the dependence of the gravitational strain on those parameters and determine the trajectories resulting in the most sizeable strains. Some non-trivial behaviors are unveiled, showing that highly eccentric events can be more easily detectable than parabolic ones. In particular, we underline the correct way to extend formulas from hyperbolic to parabolic orbits. Our reasonings are as general as possible, and we make a point of explaining our considerations pedagogically. The majority of the work is based on Newtonian dynamics and aims at being a benchmark to which more accurate calculations can be compared.</p></div>","PeriodicalId":578,"journal":{"name":"General Relativity and Gravitation","volume":"56 8","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"General Relativity and Gravitation","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10714-024-03276-y","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
We examine the main properties of gravitational waves (GWs) emitted by transient hyperbolic encounters of black holes. We begin by building the set of basic variables most relevant to setting our problem. After exposing the ranges of masses and eccentricities accessible at a given GW frequency, we analyze the dependence of the gravitational strain on those parameters and determine the trajectories resulting in the most sizeable strains. Some non-trivial behaviors are unveiled, showing that highly eccentric events can be more easily detectable than parabolic ones. In particular, we underline the correct way to extend formulas from hyperbolic to parabolic orbits. Our reasonings are as general as possible, and we make a point of explaining our considerations pedagogically. The majority of the work is based on Newtonian dynamics and aims at being a benchmark to which more accurate calculations can be compared.
期刊介绍:
General Relativity and Gravitation is a journal devoted to all aspects of modern gravitational science, and published under the auspices of the International Society on General Relativity and Gravitation.
It welcomes in particular original articles on the following topics of current research:
Analytical general relativity, including its interface with geometrical analysis
Numerical relativity
Theoretical and observational cosmology
Relativistic astrophysics
Gravitational waves: data analysis, astrophysical sources and detector science
Extensions of general relativity
Supergravity
Gravitational aspects of string theory and its extensions
Quantum gravity: canonical approaches, in particular loop quantum gravity, and path integral approaches, in particular spin foams, Regge calculus and dynamical triangulations
Quantum field theory in curved spacetime
Non-commutative geometry and gravitation
Experimental gravity, in particular tests of general relativity
The journal publishes articles on all theoretical and experimental aspects of modern general relativity and gravitation, as well as book reviews and historical articles of special interest.