Development of Multi-HRP-Conjugated Branched PEI/Antibody-Functionalized Gold Nanoparticles for Ultra-Sensitive ELISA

IF 5.5 3区 工程技术 Q1 BIOCHEMICAL RESEARCH METHODS BioChip Journal Pub Date : 2024-07-24 DOI:10.1007/s13206-024-00165-z
Jeong-Hyeop Shin, Myeong-Jun Lee, Yeong-Joong Kim, Tae-Hwan Kim, Jin-Ha Choi, Byung-Keun Oh
{"title":"Development of Multi-HRP-Conjugated Branched PEI/Antibody-Functionalized Gold Nanoparticles for Ultra-Sensitive ELISA","authors":"Jeong-Hyeop Shin, Myeong-Jun Lee, Yeong-Joong Kim, Tae-Hwan Kim, Jin-Ha Choi, Byung-Keun Oh","doi":"10.1007/s13206-024-00165-z","DOIUrl":null,"url":null,"abstract":"<p>The enzyme-linked immunosorbent assay (ELISA) is the most widely used technique for the selective detection of various analytes due to its advantages of sensitivity, simplicity, versatility, and high throughput. However, conventional ELISA is not sufficient to detect biomarkers at lower concentration ranges, such as low pM levels. Therefore, we developed multi-horseradish peroxidase (HRP)-conjugated branched polyethyleneimine (PEI)/antibody-functionalized gold nanoparticles (mHRP/bPEI/AuNPs) that immobilize a large number of HRP enzymes to lower the threshold for target antigen detection. Briefly, mHRP/bPEI/AuNPs were fabricated by attaching branched PEI with many enzyme molecules to the surface of streptavidin-HRP-coated AuNPs. The fabricated mHRP/bPEI/AuNPs were applied as a detection probe in ELISA, enabling the quantitative detection of the breast cancer biomarker Thioredoxin-1 (Trx-1) in a range from 10 pM to 100 nM and showed 10<sup>3</sup> times greater sensitivity than conventional ELISA, with a limit of detection (LOD) of 1.7 pM for Trx-1. These results suggest that the higher number of enzymes present in mHRP/bPEI/AuNPs amplifies the signal and increases the detection sensitivity. Consequently, we expect that mHRP/bPEI/AuNPs can be used in situations requiring the detection of low concentrations of biomarkers, such as early disease diagnosis.</p>","PeriodicalId":8768,"journal":{"name":"BioChip Journal","volume":null,"pages":null},"PeriodicalIF":5.5000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BioChip Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13206-024-00165-z","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

The enzyme-linked immunosorbent assay (ELISA) is the most widely used technique for the selective detection of various analytes due to its advantages of sensitivity, simplicity, versatility, and high throughput. However, conventional ELISA is not sufficient to detect biomarkers at lower concentration ranges, such as low pM levels. Therefore, we developed multi-horseradish peroxidase (HRP)-conjugated branched polyethyleneimine (PEI)/antibody-functionalized gold nanoparticles (mHRP/bPEI/AuNPs) that immobilize a large number of HRP enzymes to lower the threshold for target antigen detection. Briefly, mHRP/bPEI/AuNPs were fabricated by attaching branched PEI with many enzyme molecules to the surface of streptavidin-HRP-coated AuNPs. The fabricated mHRP/bPEI/AuNPs were applied as a detection probe in ELISA, enabling the quantitative detection of the breast cancer biomarker Thioredoxin-1 (Trx-1) in a range from 10 pM to 100 nM and showed 103 times greater sensitivity than conventional ELISA, with a limit of detection (LOD) of 1.7 pM for Trx-1. These results suggest that the higher number of enzymes present in mHRP/bPEI/AuNPs amplifies the signal and increases the detection sensitivity. Consequently, we expect that mHRP/bPEI/AuNPs can be used in situations requiring the detection of low concentrations of biomarkers, such as early disease diagnosis.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
开发用于超灵敏 ELISA 的多 HRP 共轭支链 PEI/抗体功能化金纳米粒子
酶联免疫吸附测定法(ELISA)具有灵敏、简便、多功能和高通量等优点,是选择性检测各种分析物最广泛使用的技术。然而,传统的酶联免疫吸附试验不足以检测低浓度范围内的生物标记物,如低 pM 水平。因此,我们开发了多重辣根过氧化物酶(HRP)共轭支化聚乙烯亚胺(PEI)/抗体功能化金纳米粒子(mHRP/bPEI/AuNPs),固定了大量的 HRP 酶,从而降低了目标抗原检测的门槛。简而言之,mHRP/bPEI/AuNPs 是通过在链霉亲和素-HRP 包覆的 AuNPs 表面附着带有许多酶分子的支化 PEI 而制成的。将制备的 mHRP/bPEI/AuNPs 用作 ELISA 检测探针,可在 10 pM 至 100 nM 范围内定量检测乳腺癌生物标志物硫氧还蛋白-1(Trx-1),其灵敏度是传统 ELISA 的 103 倍,Trx-1 的检测限(LOD)为 1.7 pM。这些结果表明,mHRP/bPEI/AuNPs 中含有较多的酶,可放大信号并提高检测灵敏度。因此,我们预计 mHRP/bPEI/AuNPs 可用于需要检测低浓度生物标记物的情况,如早期疾病诊断。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
BioChip Journal
BioChip Journal 生物-生化研究方法
CiteScore
7.70
自引率
16.30%
发文量
47
审稿时长
6-12 weeks
期刊介绍: BioChip Journal publishes original research and reviews in all areas of the biochip technology in the following disciplines, including protein chip, DNA chip, cell chip, lab-on-a-chip, bio-MEMS, biosensor, micro/nano mechanics, microfluidics, high-throughput screening technology, medical science, genomics, proteomics, bioinformatics, medical diagnostics, environmental monitoring and micro/nanotechnology. The Journal is committed to rapid peer review to ensure the publication of highest quality original research and timely news and review articles.
期刊最新文献
Advancing Blood–Brain Barrier-on-a-Chip Models Through Numerical Simulations Advanced Microfluidic Platform for Tumor Spheroid Formation and Cultivation Fabricated from OSTE+ Polymer Classification of DNA Mixtures by Nanoelectrokinetic Driftless Preconcentration Fabrication of Nephrotoxic Model by Kidney-on-a-Chip Implementing Renal Proximal Tubular Function In Vitro Development of Multi-HRP-Conjugated Branched PEI/Antibody-Functionalized Gold Nanoparticles for Ultra-Sensitive ELISA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1