Targeted Solutions to Improve the Overall Performance of Hydride‐Based All‐Solid‐Batteries

IF 6.5 3区 材料科学 Q2 GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY Advanced Sustainable Systems Pub Date : 2024-07-22 DOI:10.1002/adsu.202400366
Wei Zhou, Wenqiang Hu, Jiao Zhou, Fei Yan, Yun Song
{"title":"Targeted Solutions to Improve the Overall Performance of Hydride‐Based All‐Solid‐Batteries","authors":"Wei Zhou, Wenqiang Hu, Jiao Zhou, Fei Yan, Yun Song","doi":"10.1002/adsu.202400366","DOIUrl":null,"url":null,"abstract":"All‐solid‐state lithium batteries using solid electrolytes hold promise for enhancing energy density. However, some electrolytes with high ionic conductivity are declared unusable because they failed to show compatible with the anode, cathode or even worse, both. Herein, it simultaneously introduced doping and interfacial tuning to prepare fast ion conductor LiBH<jats:sub>4</jats:sub>‐MgO‐MgI<jats:sub>2</jats:sub>, which can achieve an ionic conductivity of 1.45 × 10<jats:sup>−4</jats:sup> S cm<jats:sup>−1</jats:sup> at 50 °C. This electrolyte has the usable ionic conductivity near room temperature, but faces the most extreme challenge of instability at both the lithium anode and high‐voltage cathode. Targeted solution strategies is proposed to return this electrolyte to serviceability. The physical isolation and lithium alloy is employed to solve the lithium anode issue, while the bilayer electrolyte design is applied to the high voltage cathode issue. The LiCoO<jats:sub>2</jats:sub>|Li<jats:sub>3</jats:sub>InCl<jats:sub>6</jats:sub>|LiBH<jats:sub>4</jats:sub>‐MgO‐MgI<jats:sub>2</jats:sub>|C|Li and LiCoO<jats:sub>2</jats:sub>|Li<jats:sub>3</jats:sub>InCl<jats:sub>6</jats:sub>|LiBH<jats:sub>4</jats:sub>‐MgO‐MgI<jats:sub>2</jats:sub>|LiAl, cycled upon 25 cycles at 0.1 C, achieving reversible capacities of 70 and 90 mAh g<jats:sup>−1</jats:sup>, respectively. With the targeted solutions for ionic conductivity, anode and cathode compatibility, it will pave the way for commercial application for hydride electrolytes.","PeriodicalId":7294,"journal":{"name":"Advanced Sustainable Systems","volume":"32 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Sustainable Systems","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adsu.202400366","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

All‐solid‐state lithium batteries using solid electrolytes hold promise for enhancing energy density. However, some electrolytes with high ionic conductivity are declared unusable because they failed to show compatible with the anode, cathode or even worse, both. Herein, it simultaneously introduced doping and interfacial tuning to prepare fast ion conductor LiBH4‐MgO‐MgI2, which can achieve an ionic conductivity of 1.45 × 10−4 S cm−1 at 50 °C. This electrolyte has the usable ionic conductivity near room temperature, but faces the most extreme challenge of instability at both the lithium anode and high‐voltage cathode. Targeted solution strategies is proposed to return this electrolyte to serviceability. The physical isolation and lithium alloy is employed to solve the lithium anode issue, while the bilayer electrolyte design is applied to the high voltage cathode issue. The LiCoO2|Li3InCl6|LiBH4‐MgO‐MgI2|C|Li and LiCoO2|Li3InCl6|LiBH4‐MgO‐MgI2|LiAl, cycled upon 25 cycles at 0.1 C, achieving reversible capacities of 70 and 90 mAh g−1, respectively. With the targeted solutions for ionic conductivity, anode and cathode compatibility, it will pave the way for commercial application for hydride electrolytes.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
提高基于氢化物的全固态电池整体性能的针对性解决方案
使用固体电解质的全固态锂电池有望提高能量密度。然而,一些具有高离子电导率的电解质由于无法与正极或负极兼容,甚至两者都无法兼容而被宣布为不可用。本文同时引入掺杂和界面调谐,制备出快速离子导体 LiBH4-MgO-MgI2,在 50 °C 时离子电导率可达 1.45 × 10-4 S cm-1。这种电解质在室温附近具有可用的离子电导率,但面临着锂阳极和高压阴极不稳定的最大挑战。我们提出了有针对性的解决策略,以恢复这种电解质的可用性。物理隔离和锂合金被用于解决锂阳极问题,而双层电解质设计则被用于解决高压阴极问题。LiCoO2|Li3InCl6|LiBH4-MgO-MgI2|C|Li 和 LiCoO2|Li3InCl6|LiBH4-MgO-MgI2|LiAl 在 0.1 C 下循环 25 次,可逆容量分别达到 70 和 90 mAh g-1。通过针对性地解决离子导电性、正负极兼容性等问题,将为氢化物电解质的商业应用铺平道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Sustainable Systems
Advanced Sustainable Systems Environmental Science-General Environmental Science
CiteScore
10.80
自引率
4.20%
发文量
186
期刊介绍: Advanced Sustainable Systems, a part of the esteemed Advanced portfolio, serves as an interdisciplinary sustainability science journal. It focuses on impactful research in the advancement of sustainable, efficient, and less wasteful systems and technologies. Aligned with the UN's Sustainable Development Goals, the journal bridges knowledge gaps between fundamental research, implementation, and policy-making. Covering diverse topics such as climate change, food sustainability, environmental science, renewable energy, water, urban development, and socio-economic challenges, it contributes to the understanding and promotion of sustainable systems.
期刊最新文献
Simultaneous Triboelectric and Mechanoluminescence Sensing Toward Self-Powered Applications (Adv. Sustainable Syst. 12/2024) Masthead: (Adv. Sustainable Syst. 12/2024) Co Modified Pr0.6Sm0.4Mn1O3 Perovskite Enhances the Non-Radical Pathway for Efficient Removal of Rhodamine B Ambipolar Nature Accelerates Dual-Functionality on Ni/Ni3N@NC for Simultaneous Hydrogen and Oxygen Evolution in Electrochemical Water Splitting System (Adv. Sustainable Syst. 11/2024) All Bio-Based µ-Beads from Microalgae for Probiotics Delivery (Adv. Sustainable Syst. 11/2024)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1