Applying Data Fusion Procedures to Evaluation of Impact Damage in Carbon Fiber Reinforced Plastic by Using Optical Infrared Thermography and Laser Vibrometry Techniques

IF 0.9 4区 材料科学 Q4 MATERIALS SCIENCE, CHARACTERIZATION & TESTING Russian Journal of Nondestructive Testing Pub Date : 2024-07-27 DOI:10.1134/S1061830924601685
V. Yu. Shpil’noi, D. A. Derusova, V. P. Vavilov
{"title":"Applying Data Fusion Procedures to Evaluation of Impact Damage in Carbon Fiber Reinforced Plastic by Using Optical Infrared Thermography and Laser Vibrometry Techniques","authors":"V. Yu. Shpil’noi,&nbsp;D. A. Derusova,&nbsp;V. P. Vavilov","doi":"10.1134/S1061830924601685","DOIUrl":null,"url":null,"abstract":"<p>This study is devoted to the development of fusion techniques for data obtained by one or several nondestructive testing (NDT) methods. Experimental results were obtained by applying laser vibrometry and optical infrared thermography to evaluation of impact damage to carbon fiber composites. These NDT techniques are different by their physical nature and supply specific testing results. The proposed data fusion method allows increasing the reliability of inspection results and enables estimating defect parameters. It involves both averaging data of each single NDT technique and merging the results obtained by two methods. Vibrograms obtained by laser vibrometry are used to analyze acoustic response of the test sample to stimulation at various frequencies. In turn, infrared thermographic NDT supplies the sample response to thermal stimulation. It has been shown that the fusion of these two techniques supplies a comprehensive information on defect size and location. Also, the automation of the fusion procedure increases NDT productivity and reduces subjectivity of testing results.</p>","PeriodicalId":764,"journal":{"name":"Russian Journal of Nondestructive Testing","volume":"60 3","pages":"326 - 334"},"PeriodicalIF":0.9000,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Nondestructive Testing","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1134/S1061830924601685","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0

Abstract

This study is devoted to the development of fusion techniques for data obtained by one or several nondestructive testing (NDT) methods. Experimental results were obtained by applying laser vibrometry and optical infrared thermography to evaluation of impact damage to carbon fiber composites. These NDT techniques are different by their physical nature and supply specific testing results. The proposed data fusion method allows increasing the reliability of inspection results and enables estimating defect parameters. It involves both averaging data of each single NDT technique and merging the results obtained by two methods. Vibrograms obtained by laser vibrometry are used to analyze acoustic response of the test sample to stimulation at various frequencies. In turn, infrared thermographic NDT supplies the sample response to thermal stimulation. It has been shown that the fusion of these two techniques supplies a comprehensive information on defect size and location. Also, the automation of the fusion procedure increases NDT productivity and reduces subjectivity of testing results.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用光学红外热成像和激光测振技术,将数据融合程序应用于碳纤维增强塑料的冲击损伤评估
摘要 本研究致力于开发一种或几种无损检测(NDT)方法所获数据的融合技术。通过应用激光测振仪和光学红外热成像技术对碳纤维复合材料的冲击损伤进行评估,获得了实验结果。这些无损检测技术具有不同的物理特性,并提供特定的检测结果。所提出的数据融合方法可以提高检测结果的可靠性,并能估算缺陷参数。该方法既包括对每种单一无损检测技术的数据进行平均,也包括对两种方法获得的结果进行合并。激光测振仪获得的振动图用于分析检测样本对不同频率刺激的声学响应。而红外热成像无损检测则提供样品对热刺激的响应。研究表明,这两种技术的融合可提供有关缺陷大小和位置的全面信息。此外,融合程序的自动化还能提高无损检测的效率,减少检测结果的主观性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Russian Journal of Nondestructive Testing
Russian Journal of Nondestructive Testing 工程技术-材料科学:表征与测试
CiteScore
1.60
自引率
44.40%
发文量
59
审稿时长
6-12 weeks
期刊介绍: Russian Journal of Nondestructive Testing, a translation of Defectoskopiya, is a publication of the Russian Academy of Sciences. This publication offers current Russian research on the theory and technology of nondestructive testing of materials and components. It describes laboratory and industrial investigations of devices and instrumentation and provides reviews of new equipment developed for series manufacture. Articles cover all physical methods of nondestructive testing, including magnetic and electrical; ultrasonic; X-ray and Y-ray; capillary; liquid (color luminescence), and radio (for materials of low conductivity).
期刊最新文献
Laser Ultrasonic Measurements for Generation and Detection of Lateral Waves in a Solid for Surface Defect Inspection Sparse Optimal Design of Ultrasonic Phased Array for Efficient DMAS Imaging Developing a Method for Assessing the Degree of Hydrogenation of VT1-0 Titanium Alloy by the Acoustic Method Layered Composite Hydrogenated Films of Zirconium and Niobium: Production Method and Testing Using Thermo EMF (Thermoelectric Method) Evaluating Efficiency of Foreign Object Detection Technology Based on the Use of Passive Infrared Thermography
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1