Quasi-framelets: robust graph neural networks via adaptive framelet convolution

IF 3.1 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE International Journal of Machine Learning and Cybernetics Pub Date : 2024-07-26 DOI:10.1007/s13042-024-02286-1
Mengxi Yang, Dai Shi, Xuebin Zheng, Jie Yin, Junbin Gao
{"title":"Quasi-framelets: robust graph neural networks via adaptive framelet convolution","authors":"Mengxi Yang, Dai Shi, Xuebin Zheng, Jie Yin, Junbin Gao","doi":"10.1007/s13042-024-02286-1","DOIUrl":null,"url":null,"abstract":"<p>This paper aims to provide a novel design of a multiscale framelet convolution for spectral graph neural networks (GNNs). While current spectral methods excel in various graph learning tasks, they often lack the flexibility to adapt to noisy, incomplete, or perturbed graph signals, making them fragile in such conditions. Our newly proposed framelet convolution addresses these limitations by decomposing graph data into low-pass and high-pass spectra through a finely-tuned multiscale approach. Our approach directly designs filtering functions within the spectral domain, allowing for precise control over the spectral components. The proposed design excels in filtering out unwanted spectral information and significantly reduces the adverse effects of noisy graph signals. Our approach not only enhances the robustness of GNNs but also preserves crucial graph features and structures. Through extensive experiments on diverse, real-world graph datasets, we demonstrate that our framelet convolution achieves superior performance in node classification tasks. It exhibits remarkable resilience to noisy data and adversarial attacks, highlighting its potential as a robust solution for real-world graph applications. This advancement opens new avenues for more adaptive and reliable spectral GNN architectures.</p>","PeriodicalId":51327,"journal":{"name":"International Journal of Machine Learning and Cybernetics","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Machine Learning and Cybernetics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s13042-024-02286-1","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

This paper aims to provide a novel design of a multiscale framelet convolution for spectral graph neural networks (GNNs). While current spectral methods excel in various graph learning tasks, they often lack the flexibility to adapt to noisy, incomplete, or perturbed graph signals, making them fragile in such conditions. Our newly proposed framelet convolution addresses these limitations by decomposing graph data into low-pass and high-pass spectra through a finely-tuned multiscale approach. Our approach directly designs filtering functions within the spectral domain, allowing for precise control over the spectral components. The proposed design excels in filtering out unwanted spectral information and significantly reduces the adverse effects of noisy graph signals. Our approach not only enhances the robustness of GNNs but also preserves crucial graph features and structures. Through extensive experiments on diverse, real-world graph datasets, we demonstrate that our framelet convolution achieves superior performance in node classification tasks. It exhibits remarkable resilience to noisy data and adversarial attacks, highlighting its potential as a robust solution for real-world graph applications. This advancement opens new avenues for more adaptive and reliable spectral GNN architectures.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
准小帧:通过自适应小帧卷积实现鲁棒图神经网络
本文旨在为光谱图神经网络(GNN)提供一种新颖的多尺度小帧卷积设计。虽然目前的光谱方法在各种图学习任务中表现出色,但它们往往缺乏适应噪声、不完整或扰动图信号的灵活性,因此在这种情况下很脆弱。我们新提出的小帧卷积通过微调多尺度方法将图数据分解为低通和高通频谱,从而解决了这些局限性。我们的方法直接在频谱域内设计滤波函数,从而实现对频谱成分的精确控制。所提出的设计能很好地过滤掉不需要的频谱信息,并显著降低噪声图信号的不利影响。我们的方法不仅增强了 GNN 的鲁棒性,还保留了重要的图特征和结构。通过在各种真实图数据集上的广泛实验,我们证明了我们的小帧卷积在节点分类任务中取得了卓越的性能。它对嘈杂数据和对抗性攻击表现出了卓越的适应能力,凸显了其作为现实世界图应用的稳健解决方案的潜力。这一进步为更自适应、更可靠的光谱 GNN 架构开辟了新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Machine Learning and Cybernetics
International Journal of Machine Learning and Cybernetics COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
7.90
自引率
10.70%
发文量
225
期刊介绍: Cybernetics is concerned with describing complex interactions and interrelationships between systems which are omnipresent in our daily life. Machine Learning discovers fundamental functional relationships between variables and ensembles of variables in systems. The merging of the disciplines of Machine Learning and Cybernetics is aimed at the discovery of various forms of interaction between systems through diverse mechanisms of learning from data. The International Journal of Machine Learning and Cybernetics (IJMLC) focuses on the key research problems emerging at the junction of machine learning and cybernetics and serves as a broad forum for rapid dissemination of the latest advancements in the area. The emphasis of IJMLC is on the hybrid development of machine learning and cybernetics schemes inspired by different contributing disciplines such as engineering, mathematics, cognitive sciences, and applications. New ideas, design alternatives, implementations and case studies pertaining to all the aspects of machine learning and cybernetics fall within the scope of the IJMLC. Key research areas to be covered by the journal include: Machine Learning for modeling interactions between systems Pattern Recognition technology to support discovery of system-environment interaction Control of system-environment interactions Biochemical interaction in biological and biologically-inspired systems Learning for improvement of communication schemes between systems
期刊最新文献
LSSMSD: defending against black-box DNN model stealing based on localized stochastic sensitivity CHNSCDA: circRNA-disease association prediction based on strongly correlated heterogeneous neighbor sampling Contextual feature fusion and refinement network for camouflaged object detection Scnet: shape-aware convolution with KFNN for point clouds completion Self-refined variational transformer for image-conditioned layout generation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1