{"title":"A dual stream attention network for facial expression recognition in the wild","authors":"Hui Tang, Yichang Li, Zhong Jin","doi":"10.1007/s13042-024-02287-0","DOIUrl":null,"url":null,"abstract":"<p>Facial Expression Recognition (FER) is crucial for human-computer interaction and has achieved satisfactory results on lab-collected datasets. However, occlusion and head pose variation in the real world make FER extremely challenging due to facial information deficiency. This paper proposes a novel Dual Stream Attention Network (DSAN) for occlusion and head pose robust FER. Specifically, DSAN consists of a Global Feature Element-based Attention Network (GFE-AN) and a Multi-Feature Fusion-based Attention Network (MFF-AN). A sparse attention block and a feature recalibration loss designed in GFE-AN selectively emphasize feature elements meaningful for facial expression and suppress those unrelated to facial expression. And a lightweight local feature attention block is customized in MFF-AN to extract rich semantic information from different representation sub-spaces. In addition, DSAN takes into account computation overhead minimization when designing model architecture. Extensive experiments on public benchmarks demonstrate that the proposed DSAN outperforms the state-of-the-art methods with 89.70% on RAF-DB, 89.93% on FERPlus, 65.77% on AffectNet-7, 62.13% on AffectNet-8. Moreover, the parameter size of DSAN is only 11.33M, which is lightweight compared to most of the recent in-the-wild FER algorithms.</p>","PeriodicalId":51327,"journal":{"name":"International Journal of Machine Learning and Cybernetics","volume":"37 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Machine Learning and Cybernetics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s13042-024-02287-0","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Facial Expression Recognition (FER) is crucial for human-computer interaction and has achieved satisfactory results on lab-collected datasets. However, occlusion and head pose variation in the real world make FER extremely challenging due to facial information deficiency. This paper proposes a novel Dual Stream Attention Network (DSAN) for occlusion and head pose robust FER. Specifically, DSAN consists of a Global Feature Element-based Attention Network (GFE-AN) and a Multi-Feature Fusion-based Attention Network (MFF-AN). A sparse attention block and a feature recalibration loss designed in GFE-AN selectively emphasize feature elements meaningful for facial expression and suppress those unrelated to facial expression. And a lightweight local feature attention block is customized in MFF-AN to extract rich semantic information from different representation sub-spaces. In addition, DSAN takes into account computation overhead minimization when designing model architecture. Extensive experiments on public benchmarks demonstrate that the proposed DSAN outperforms the state-of-the-art methods with 89.70% on RAF-DB, 89.93% on FERPlus, 65.77% on AffectNet-7, 62.13% on AffectNet-8. Moreover, the parameter size of DSAN is only 11.33M, which is lightweight compared to most of the recent in-the-wild FER algorithms.
期刊介绍:
Cybernetics is concerned with describing complex interactions and interrelationships between systems which are omnipresent in our daily life. Machine Learning discovers fundamental functional relationships between variables and ensembles of variables in systems. The merging of the disciplines of Machine Learning and Cybernetics is aimed at the discovery of various forms of interaction between systems through diverse mechanisms of learning from data.
The International Journal of Machine Learning and Cybernetics (IJMLC) focuses on the key research problems emerging at the junction of machine learning and cybernetics and serves as a broad forum for rapid dissemination of the latest advancements in the area. The emphasis of IJMLC is on the hybrid development of machine learning and cybernetics schemes inspired by different contributing disciplines such as engineering, mathematics, cognitive sciences, and applications. New ideas, design alternatives, implementations and case studies pertaining to all the aspects of machine learning and cybernetics fall within the scope of the IJMLC.
Key research areas to be covered by the journal include:
Machine Learning for modeling interactions between systems
Pattern Recognition technology to support discovery of system-environment interaction
Control of system-environment interactions
Biochemical interaction in biological and biologically-inspired systems
Learning for improvement of communication schemes between systems