Manipulating single oxygen at Cu2O-island surfaces through thermomechanical coupling

IF 6.8 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Science China Materials Pub Date : 2024-07-24 DOI:10.1007/s40843-024-3016-5
Huanhuan Yang  (, ), Xiao Jiang  (, ), Zhihao Wang  (, ), Hanpu Liang  (, ), Xie Zhang  (, ), Pengfei Guan  (, )
{"title":"Manipulating single oxygen at Cu2O-island surfaces through thermomechanical coupling","authors":"Huanhuan Yang \n (,&nbsp;),&nbsp;Xiao Jiang \n (,&nbsp;),&nbsp;Zhihao Wang \n (,&nbsp;),&nbsp;Hanpu Liang \n (,&nbsp;),&nbsp;Xie Zhang \n (,&nbsp;),&nbsp;Pengfei Guan \n (,&nbsp;)","doi":"10.1007/s40843-024-3016-5","DOIUrl":null,"url":null,"abstract":"<div><p>Single oxygen diffusion event, the most favorable rate-limiting process of epitaxial Cu<sub>2</sub>O oxide-island layer-by-layer growth kinetics, may lead to oxygen defects due to thermomechanical coupling. However, the formation rules of oxygen defects remain unclear, preventing the realization of controllable oxygen defects on oxide-island surfaces. Here, we utilize the first-principles method to investigate the formation rules of intrinsic oxygen defects in the surface layers of prototypical metal-oxide (Cu<sub>2</sub>O) surfaces under thermomechanical coupling effects. We establish the thermodynamic phase diagram for oxygen-defect-modulated Cu<sub>2</sub>O surfaces, enabling the prediction of the growth of oxide islands during Cu oxidation, which aligns closely with <i>in-situ</i> environmental transmission electron microscopy (ETEM) experiment observations. By exploring the strain-modulated phase diagrams, we propose a potential strategy for controlling the type and concentration of oxygen defects on oxide-island surfaces. Our findings provide an effective approach to theoretically understanding the oxidation process of metal surfaces, thus enabling the computational design of high-performance corrosion-resistant surfaces.\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":773,"journal":{"name":"Science China Materials","volume":"67 10","pages":"3288 - 3297"},"PeriodicalIF":6.8000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40843-024-3016-5","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Single oxygen diffusion event, the most favorable rate-limiting process of epitaxial Cu2O oxide-island layer-by-layer growth kinetics, may lead to oxygen defects due to thermomechanical coupling. However, the formation rules of oxygen defects remain unclear, preventing the realization of controllable oxygen defects on oxide-island surfaces. Here, we utilize the first-principles method to investigate the formation rules of intrinsic oxygen defects in the surface layers of prototypical metal-oxide (Cu2O) surfaces under thermomechanical coupling effects. We establish the thermodynamic phase diagram for oxygen-defect-modulated Cu2O surfaces, enabling the prediction of the growth of oxide islands during Cu oxidation, which aligns closely with in-situ environmental transmission electron microscopy (ETEM) experiment observations. By exploring the strain-modulated phase diagrams, we propose a potential strategy for controlling the type and concentration of oxygen defects on oxide-island surfaces. Our findings provide an effective approach to theoretically understanding the oxidation process of metal surfaces, thus enabling the computational design of high-performance corrosion-resistant surfaces.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过热机械耦合操纵 Cu2O 岛表面的单氧
单次氧扩散事件是外延 Cu2O 氧化物岛逐层生长动力学中最有利的限速过程,可能会因热力学耦合而导致氧缺陷。然而,氧缺陷的形成规律仍不清楚,这阻碍了氧化物岛表面可控氧缺陷的实现。在此,我们利用第一原理方法研究了热机械耦合效应下金属氧化物(Cu2O)原型表面表层本征氧缺陷的形成规律。我们建立了氧缺陷调制 Cu2O 表面的热力学相图,从而能够预测铜氧化过程中氧化物岛的生长,这与现场环境透射电子显微镜(ETEM)实验观测结果非常吻合。通过探索应变调制相图,我们提出了一种控制氧化物岛表面氧缺陷类型和浓度的潜在策略。我们的发现为从理论上理解金属表面的氧化过程提供了一种有效方法,从而使高性能耐腐蚀表面的计算设计成为可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Science China Materials
Science China Materials Materials Science-General Materials Science
CiteScore
11.40
自引率
7.40%
发文量
949
期刊介绍: Science China Materials (SCM) is a globally peer-reviewed journal that covers all facets of materials science. It is supervised by the Chinese Academy of Sciences and co-sponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China. The journal is jointly published monthly in both printed and electronic forms by Science China Press and Springer. The aim of SCM is to encourage communication of high-quality, innovative research results at the cutting-edge interface of materials science with chemistry, physics, biology, and engineering. It focuses on breakthroughs from around the world and aims to become a world-leading academic journal for materials science.
期刊最新文献
Reaction-based small-molecule fluorescent probes for endoplasmic reticulum- and mitochondria-targeted biosensing and bioimaging Promising graphdiyne-based nanomaterials for environmental pollutant control Hydrogen embrittlement of retrogression-reaged 7xxx-series aluminum alloys—a comprehensive review Supramolecular glass: a new platform for ultralong phosphorescence Simultaneously achieving high sensitivity, low dark current and low detection limits in anti-perovskites towards X-ray detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1