Extinction and stationary distribution of a novel SIRS epidemic model with general incidence rate and Ornstein–Uhlenbeck process

IF 3.1 3区 数学 Q1 MATHEMATICS Advances in Difference Equations Pub Date : 2024-07-25 DOI:10.1186/s13662-024-03821-8
Hong Cao, Xiaohu Liu, Linfei Nie
{"title":"Extinction and stationary distribution of a novel SIRS epidemic model with general incidence rate and Ornstein–Uhlenbeck process","authors":"Hong Cao, Xiaohu Liu, Linfei Nie","doi":"10.1186/s13662-024-03821-8","DOIUrl":null,"url":null,"abstract":"<p>We propose, in this paper, a novel stochastic SIRS epidemic model to characterize the effect of uncertainty on the distribution of infectious disease, where the general incidence rate and Ornstein–Uhlenbeck process are also introduced to describe the complexity of disease transmission. First, the existence and uniqueness of the global nonnegative solution of our model is obtained, which is the basis for the discussion of the dynamical behavior of the model. And then, we derive a sufficient condition for exponential extinction of infectious diseases. Furthermore, through constructing a Lyapunov function and using Fatou’s lemma, we obtain a sufficient criterion for the existence and ergodicity of a stationary distribution, which implies the persistence of the disease. In addition, the specific form of the density function of the model near the quasiendemic equilibrium is proposed by solving the corresponding Fokker–Planck equation and using some relevant algebraic equation theory. Finally, we explain the above theoretical results through some numerical simulations.</p>","PeriodicalId":49245,"journal":{"name":"Advances in Difference Equations","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Difference Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1186/s13662-024-03821-8","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We propose, in this paper, a novel stochastic SIRS epidemic model to characterize the effect of uncertainty on the distribution of infectious disease, where the general incidence rate and Ornstein–Uhlenbeck process are also introduced to describe the complexity of disease transmission. First, the existence and uniqueness of the global nonnegative solution of our model is obtained, which is the basis for the discussion of the dynamical behavior of the model. And then, we derive a sufficient condition for exponential extinction of infectious diseases. Furthermore, through constructing a Lyapunov function and using Fatou’s lemma, we obtain a sufficient criterion for the existence and ergodicity of a stationary distribution, which implies the persistence of the disease. In addition, the specific form of the density function of the model near the quasiendemic equilibrium is proposed by solving the corresponding Fokker–Planck equation and using some relevant algebraic equation theory. Finally, we explain the above theoretical results through some numerical simulations.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有一般发病率和 Ornstein-Uhlenbeck 过程的新型 SIRS 流行病模型的消亡和静态分布
本文提出了一种新的随机 SIRS 流行病模型来描述不确定性对传染病分布的影响,其中还引入了一般发病率和 Ornstein-Uhlenbeck 过程来描述疾病传播的复杂性。首先,我们得到了模型全局非负解的存在性和唯一性,这是讨论模型动力学行为的基础。然后,我们推导出传染病指数消亡的充分条件。此外,通过构建 Lyapunov 函数和使用 Fatou Lemma,我们得到了静态分布存在性和遍历性的充分条件,这意味着疾病的持续性。此外,通过求解相应的福克-普朗克方程,并利用一些相关的代数方程理论,提出了模型在准流行平衡附近密度函数的具体形式。最后,我们通过一些数值模拟来解释上述理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advances in Difference Equations
Advances in Difference Equations MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
8.60
自引率
0.00%
发文量
0
审稿时长
4-8 weeks
期刊介绍: The theory of difference equations, the methods used, and their wide applications have advanced beyond their adolescent stage to occupy a central position in applicable analysis. In fact, in the last 15 years, the proliferation of the subject has been witnessed by hundreds of research articles, several monographs, many international conferences, and numerous special sessions. The theory of differential and difference equations forms two extreme representations of real world problems. For example, a simple population model when represented as a differential equation shows the good behavior of solutions whereas the corresponding discrete analogue shows the chaotic behavior. The actual behavior of the population is somewhere in between. The aim of Advances in Difference Equations is to report mainly the new developments in the field of difference equations, and their applications in all fields. We will also consider research articles emphasizing the qualitative behavior of solutions of ordinary, partial, delay, fractional, abstract, stochastic, fuzzy, and set-valued differential equations. Advances in Difference Equations will accept high-quality articles containing original research results and survey articles of exceptional merit.
期刊最新文献
Dynamic analysis of human papillomavirus transmission model under vaccine intervention: a case study of cervical cancer patients from Hungary Dynamic analysis and optimal control of a mosquito-borne infectious disease model under the influence of biodiversity dilution effect A new paradigm for scattering theory of linear and nonlinear waves: review and open problems The Euler-Lagrange equations of nabla derivatives for variational approach to optimization problems on time scales Modeling the co-circulation of influenza and COVID-19 in Hong Kong, China
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1