{"title":"Eco‐friendly Visible Wavelength PhotodetectorsBasedon Colloidal Molybdenum Trioxide Nanobelt Arrays","authors":"D. S. Ivan Jebakumar, Vallabha Rao Rikka","doi":"10.1002/cptc.202400038","DOIUrl":null,"url":null,"abstract":"In an era marked by growing emphasis on sustainability and innovation, the quest for eco‐friendly energy conversion devices capable of harnessing visible light has gained paramount importance. In response to this critical demand, we demonstrate visible light‐responsive photoswitching from molybdenum trioxide nanobelt arrays in the photoconductive device fabricated using solution‐processing technique. We exploit the visible light‐driven modulation of conductivity in the reversibly switchable photochromic state of MoO3 to fabricate a photochromism‐assisted photoconductive photodetector with fast response (< 0.1 s), significant on/off ratio and excellent responsivity (41 AW‐1) at 5 V. The light harvesting strategy presented herein holds the potential for efficient energy generation by harnessing visible light, even under low‐light conditions.","PeriodicalId":10108,"journal":{"name":"ChemPhotoChem","volume":"41 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemPhotoChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cptc.202400038","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In an era marked by growing emphasis on sustainability and innovation, the quest for eco‐friendly energy conversion devices capable of harnessing visible light has gained paramount importance. In response to this critical demand, we demonstrate visible light‐responsive photoswitching from molybdenum trioxide nanobelt arrays in the photoconductive device fabricated using solution‐processing technique. We exploit the visible light‐driven modulation of conductivity in the reversibly switchable photochromic state of MoO3 to fabricate a photochromism‐assisted photoconductive photodetector with fast response (< 0.1 s), significant on/off ratio and excellent responsivity (41 AW‐1) at 5 V. The light harvesting strategy presented herein holds the potential for efficient energy generation by harnessing visible light, even under low‐light conditions.