High-resolution cloud detection network

IF 1 4区 计算机科学 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC Journal of Electronic Imaging Pub Date : 2024-07-01 DOI:10.1117/1.jei.33.4.043027
Jingsheng Li, Tianxiang Xue, Jiayi Zhao, Jingmin Ge, Yufang Min, Wei Su, Kun Zhan
{"title":"High-resolution cloud detection network","authors":"Jingsheng Li, Tianxiang Xue, Jiayi Zhao, Jingmin Ge, Yufang Min, Wei Su, Kun Zhan","doi":"10.1117/1.jei.33.4.043027","DOIUrl":null,"url":null,"abstract":"The complexity of clouds, particularly in terms of texture detail at high resolutions, has not been well explored by most existing cloud detection networks. We introduce the high-resolution cloud detection network (HR-cloud-Net), which utilizes a hierarchical high-resolution integration approach. HR-cloud-Net integrates a high-resolution representation module, layer-wise cascaded feature fusion module, and multiresolution pyramid pooling module to effectively capture complex cloud features. This architecture preserves detailed cloud texture information while facilitating feature exchange across different resolutions, thereby enhancing the overall performance in cloud detection. Additionally, an approach is introduced wherein a student view, trained on noisy augmented images, is supervised by a teacher view processing normal images. This setup enables the student to learn from cleaner supervisions provided by the teacher, leading to an improved performance. Extensive evaluations on three optical satellite image cloud detection datasets validate the superior performance of HR-cloud-Net compared with existing methods.","PeriodicalId":54843,"journal":{"name":"Journal of Electronic Imaging","volume":"15 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electronic Imaging","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1117/1.jei.33.4.043027","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The complexity of clouds, particularly in terms of texture detail at high resolutions, has not been well explored by most existing cloud detection networks. We introduce the high-resolution cloud detection network (HR-cloud-Net), which utilizes a hierarchical high-resolution integration approach. HR-cloud-Net integrates a high-resolution representation module, layer-wise cascaded feature fusion module, and multiresolution pyramid pooling module to effectively capture complex cloud features. This architecture preserves detailed cloud texture information while facilitating feature exchange across different resolutions, thereby enhancing the overall performance in cloud detection. Additionally, an approach is introduced wherein a student view, trained on noisy augmented images, is supervised by a teacher view processing normal images. This setup enables the student to learn from cleaner supervisions provided by the teacher, leading to an improved performance. Extensive evaluations on three optical satellite image cloud detection datasets validate the superior performance of HR-cloud-Net compared with existing methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高分辨率云检测网络
云的复杂性,尤其是高分辨率下的纹理细节,尚未被大多数现有的云检测网络很好地发掘。我们引入了高分辨率云检测网络(HR-cloud-Net),它采用了分层高分辨率集成方法。HR-cloud-Net 集成了高分辨率表示模块、逐层级联特征融合模块和多分辨率金字塔池模块,可有效捕捉复杂的云特征。这种架构既保留了详细的云纹理信息,又促进了不同分辨率之间的特征交换,从而提高了云检测的整体性能。此外,还引入了一种方法,即在处理正常图像的教师视图的监督下,在有噪声的增强图像上训练学生视图。这种设置使学生能够从教师提供的更清洁的监督中学习,从而提高性能。在三个光学卫星图像云检测数据集上进行的广泛评估验证了 HR-cloud-Net 与现有方法相比的卓越性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Electronic Imaging
Journal of Electronic Imaging 工程技术-成像科学与照相技术
CiteScore
1.70
自引率
27.30%
发文量
341
审稿时长
4.0 months
期刊介绍: The Journal of Electronic Imaging publishes peer-reviewed papers in all technology areas that make up the field of electronic imaging and are normally considered in the design, engineering, and applications of electronic imaging systems.
期刊最新文献
DTSIDNet: a discrete wavelet and transformer based network for single image denoising Multi-head attention with reinforcement learning for supervised video summarization End-to-end multitasking network for smart container product positioning and segmentation Generative object separation in X-ray images Toward effective local dimming-driven liquid crystal displays: a deep curve estimation–based adaptive compensation solution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1