Optimization of Yucca filamentosa fiber based graft copolymer through response surface methodology and evaluation of physico-chemical properties

IF 1.7 4区 工程技术 Q4 POLYMER SCIENCE International Journal of Polymer Analysis and Characterization Pub Date : 2024-10-02 DOI:10.1080/1023666X.2024.2377645
Surjit Kaur , Mithu Maiti Jana
{"title":"Optimization of Yucca filamentosa fiber based graft copolymer through response surface methodology and evaluation of physico-chemical properties","authors":"Surjit Kaur ,&nbsp;Mithu Maiti Jana","doi":"10.1080/1023666X.2024.2377645","DOIUrl":null,"url":null,"abstract":"<div><div>The study of the physico-chemical modification of <em>Yucca filamentosa (Yf)</em> natural fiber by graft copolymerization with ethylmethacrylate using ferrous ammonium sulfate-potassium persulfate as a redox initiator has been reported in the article. Initially, six process parameters; reaction duration, reaction temperature, solvent amount, pH, FAS:KPS ratio, and monomer concentration were used in the study in a sequential experimental design technique, and the significant process variables affecting the yield of the graft copolymer were identified. The Resolution-V design method identified the significant parameters as the reaction temperature, amount of solvent, and the concentration of monomer. In second phase of the study, the screened variables were utilized in the development of a model through the technique of response surface methodology (RSM) for the prediction of the yields, and its optimization. The developed RSM model fitted well with the experimental data, and predicted for the optimal conditions of reactions as temperature 50 °C, solvent 100 ml, and the monomer 3.05 × 10<sup>−3 </sup>mol/L; at which the highest graft yield percentage obtained was 124.2%. The techniques of FTIR, SEM, and XRD were used for the characterization graft copolymers. Studies of the various physico-chemical properties showed that the produced graft copolymers were more resistant than the natural fibers.</div></div>","PeriodicalId":14236,"journal":{"name":"International Journal of Polymer Analysis and Characterization","volume":"29 7","pages":"Pages 447-464"},"PeriodicalIF":1.7000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Polymer Analysis and Characterization","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1023666X24000301","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The study of the physico-chemical modification of Yucca filamentosa (Yf) natural fiber by graft copolymerization with ethylmethacrylate using ferrous ammonium sulfate-potassium persulfate as a redox initiator has been reported in the article. Initially, six process parameters; reaction duration, reaction temperature, solvent amount, pH, FAS:KPS ratio, and monomer concentration were used in the study in a sequential experimental design technique, and the significant process variables affecting the yield of the graft copolymer were identified. The Resolution-V design method identified the significant parameters as the reaction temperature, amount of solvent, and the concentration of monomer. In second phase of the study, the screened variables were utilized in the development of a model through the technique of response surface methodology (RSM) for the prediction of the yields, and its optimization. The developed RSM model fitted well with the experimental data, and predicted for the optimal conditions of reactions as temperature 50 °C, solvent 100 ml, and the monomer 3.05 × 10−3 mol/L; at which the highest graft yield percentage obtained was 124.2%. The techniques of FTIR, SEM, and XRD were used for the characterization graft copolymers. Studies of the various physico-chemical properties showed that the produced graft copolymers were more resistant than the natural fibers.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过响应面方法优化丝兰纤维基接枝共聚物并评估其物理化学性能
以硫酸亚铁铵-过硫酸钾为重做剂,通过与甲基丙烯酸乙酯的接枝共聚对丝兰(Yucca filamentosa,Yf)天然纤维进行物理化学改性的研究...
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.50
自引率
5.30%
发文量
37
审稿时长
1.6 months
期刊介绍: The scope of the journal is to publish original contributions and reviews on studies, methodologies, instrumentation, and applications involving the analysis and characterization of polymers and polymeric-based materials, including synthetic polymers, blends, composites, fibers, coatings, supramolecular structures, polysaccharides, and biopolymers. The Journal will accept papers and review articles on the following topics and research areas involving fundamental and applied studies of polymer analysis and characterization: Characterization and analysis of new and existing polymers and polymeric-based materials. Design and evaluation of analytical instrumentation and physical testing equipment. Determination of molecular weight, size, conformation, branching, cross-linking, chemical structure, and sequence distribution. Using separation, spectroscopic, and scattering techniques. Surface characterization of polymeric materials. Measurement of solution and bulk properties and behavior of polymers. Studies involving structure-property-processing relationships, and polymer aging. Analysis of oligomeric materials. Analysis of polymer additives and decomposition products.
期刊最新文献
Synthesis, rheological and thermal studies of Gum ghatti-cl-poly(acrylic acid) hydrogels containing CoFe2O4 nanoparticles Preparation and characterization of fumed silica added PMMA denture base materials High-performance biodegradable triboelectric nanogenerators using CoFe2O4 filled poly (butylene adipate-co-terephthalate) Optimization of Yucca filamentosa fiber based graft copolymer through response surface methodology and evaluation of physico-chemical properties Mechanical, Thermal, and Water Absorption Behavior of Ash Gourd (Benincasa Hispida) Peel Particles Filled Epoxy Composites
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1