Xueliang Li, Bo Ning, Yongtang Shi, Shenggui Zhang
{"title":"Counting rainbow triangles in edge-colored graphs","authors":"Xueliang Li, Bo Ning, Yongtang Shi, Shenggui Zhang","doi":"10.1002/jgt.23158","DOIUrl":null,"url":null,"abstract":"<p>Let <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> be an edge-colored graph on <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>n</mi>\n </mrow>\n </mrow>\n <annotation> $n$</annotation>\n </semantics></math> vertices. The minimum color degree of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math>, denoted by <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msup>\n <mi>δ</mi>\n \n <mi>c</mi>\n </msup>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> ${\\delta }^{c}(G)$</annotation>\n </semantics></math>, is defined as the minimum number of colors assigned to the edges incident to a vertex in <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math>. In 2013, Li proved that an edge-colored graph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> on <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>n</mi>\n </mrow>\n </mrow>\n <annotation> $n$</annotation>\n </semantics></math> vertices contains a rainbow triangle if <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msup>\n <mi>δ</mi>\n \n <mi>c</mi>\n </msup>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>≥</mo>\n \n <mfrac>\n <mrow>\n <mi>n</mi>\n \n <mo>+</mo>\n \n <mn>1</mn>\n </mrow>\n \n <mn>2</mn>\n </mfrac>\n </mrow>\n </mrow>\n <annotation> ${\\delta }^{c}(G)\\ge \\frac{n+1}{2}$</annotation>\n </semantics></math>. In this paper, we obtain several estimates on the number of rainbow triangles through one given vertex in <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math>. As a consequence, we prove counting results for rainbow triangles in edge-colored graphs. One main theorem states that the number of rainbow triangles in <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> is at least <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mfrac>\n <mn>1</mn>\n \n <mn>6</mn>\n </mfrac>\n \n <msup>\n <mi>δ</mi>\n \n <mi>c</mi>\n </msup>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mn>2</mn>\n \n <msup>\n <mi>δ</mi>\n \n <mi>c</mi>\n </msup>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>−</mo>\n \n <mi>n</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n \n <mi>n</mi>\n </mrow>\n </mrow>\n <annotation> $\\frac{1}{6}{\\delta }^{c}(G)(2{\\delta }^{c}(G)-n)n$</annotation>\n </semantics></math>, which is best possible by considering the rainbow <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n </mrow>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math>-partite Turán graph, where its order is divisible by <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n </mrow>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math>. This means that there are <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>Ω</mi>\n \n <mrow>\n <mo>(</mo>\n \n <msup>\n <mi>n</mi>\n \n <mn>2</mn>\n </msup>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> ${\\rm{\\Omega }}({n}^{2})$</annotation>\n </semantics></math> rainbow triangles in <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> if <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msup>\n <mi>δ</mi>\n \n <mi>c</mi>\n </msup>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>≥</mo>\n \n <mfrac>\n <mrow>\n <mi>n</mi>\n \n <mo>+</mo>\n \n <mn>1</mn>\n </mrow>\n \n <mn>2</mn>\n </mfrac>\n </mrow>\n </mrow>\n <annotation> ${\\delta }^{c}(G)\\ge \\frac{n+1}{2}$</annotation>\n </semantics></math>, and <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>Ω</mi>\n \n <mrow>\n <mo>(</mo>\n \n <msup>\n <mi>n</mi>\n \n <mn>3</mn>\n </msup>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> ${\\rm{\\Omega }}({n}^{3})$</annotation>\n </semantics></math> rainbow triangles in <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> if <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msup>\n <mi>δ</mi>\n \n <mi>c</mi>\n </msup>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>≥</mo>\n \n <mi>c</mi>\n \n <mi>n</mi>\n </mrow>\n </mrow>\n <annotation> ${\\delta }^{c}(G)\\ge cn$</annotation>\n </semantics></math> when <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>c</mi>\n \n <mo>></mo>\n \n <mfrac>\n <mn>1</mn>\n \n <mn>2</mn>\n </mfrac>\n </mrow>\n </mrow>\n <annotation> $c\\gt \\frac{1}{2}$</annotation>\n </semantics></math>. Both results are tight in the sense of the order of the magnitude. We also prove a counting version of a previous theorem on rainbow triangles under a color neighborhood union condition due to Broersma et al., and an asymptotically tight color degree condition forcing a colored friendship subgraph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>F</mi>\n \n <mi>k</mi>\n </msub>\n </mrow>\n </mrow>\n <annotation> ${F}_{k}$</annotation>\n </semantics></math> (i.e., <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n </mrow>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math> rainbow triangles sharing a common vertex).</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"107 4","pages":"742-758"},"PeriodicalIF":0.9000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23158","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let be an edge-colored graph on vertices. The minimum color degree of , denoted by , is defined as the minimum number of colors assigned to the edges incident to a vertex in . In 2013, Li proved that an edge-colored graph on vertices contains a rainbow triangle if . In this paper, we obtain several estimates on the number of rainbow triangles through one given vertex in . As a consequence, we prove counting results for rainbow triangles in edge-colored graphs. One main theorem states that the number of rainbow triangles in is at least , which is best possible by considering the rainbow -partite Turán graph, where its order is divisible by . This means that there are rainbow triangles in if , and rainbow triangles in if when . Both results are tight in the sense of the order of the magnitude. We also prove a counting version of a previous theorem on rainbow triangles under a color neighborhood union condition due to Broersma et al., and an asymptotically tight color degree condition forcing a colored friendship subgraph (i.e., rainbow triangles sharing a common vertex).
期刊介绍:
The Journal of Graph Theory is devoted to a variety of topics in graph theory, such as structural results about graphs, graph algorithms with theoretical emphasis, and discrete optimization on graphs. The scope of the journal also includes related areas in combinatorics and the interaction of graph theory with other mathematical sciences.
A subscription to the Journal of Graph Theory includes a subscription to the Journal of Combinatorial Designs .