Nilam Tathawadekar, Alper Ösün, Alexander J. Eder, Camilo F. Silva, Nils Thuerey
{"title":"Linear and nonlinear flame response prediction of turbulent flames using neural network models","authors":"Nilam Tathawadekar, Alper Ösün, Alexander J. Eder, Camilo F. Silva, Nils Thuerey","doi":"10.1177/17568277241262641","DOIUrl":null,"url":null,"abstract":"Modelling the flame response of turbulent flames via data-driven approaches is challenging due, among others, to the presence of combustion noise. Neural network methods have shown good potential to infer laminar flames’ linear and nonlinear flame response when externally forced with broadband signals. The present work extends those studies and analyses the ability of neural network models to evaluate the linear and nonlinear flame response of turbulent flames. In the first part of this work, the neural network is trained to evaluate and interpolate the linear flame response model when presented with data obtained at various thermal conditions. In the second part, the neural network is trained to infer the nonlinear flame response model when presented with time series exhibiting sufficient large amplitudes. In both cases, the data is obtained from a large eddy simulation of an academic combustor when acoustically forced by broadband signals.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/17568277241262641","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Modelling the flame response of turbulent flames via data-driven approaches is challenging due, among others, to the presence of combustion noise. Neural network methods have shown good potential to infer laminar flames’ linear and nonlinear flame response when externally forced with broadband signals. The present work extends those studies and analyses the ability of neural network models to evaluate the linear and nonlinear flame response of turbulent flames. In the first part of this work, the neural network is trained to evaluate and interpolate the linear flame response model when presented with data obtained at various thermal conditions. In the second part, the neural network is trained to infer the nonlinear flame response model when presented with time series exhibiting sufficient large amplitudes. In both cases, the data is obtained from a large eddy simulation of an academic combustor when acoustically forced by broadband signals.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.