A machine learning approach to predict mortality and pulmonary hypertension severity in newborns with congenital diaphragmatic hernia

Luana Conte, Ilaria Amodeo, Giorgio De Nunzio, Genny Raffaeli, Irene Borzani, Nicola Persico, Alice Griggio, Giuseppe Como, Mariarosa Colnaghi, Monica Fumagalli, Donato Cascio, Giacomo Cavallaro
{"title":"A machine learning approach to predict mortality and pulmonary hypertension severity in newborns with congenital diaphragmatic hernia","authors":"Luana Conte, Ilaria Amodeo, Giorgio De Nunzio, Genny Raffaeli, Irene Borzani, Nicola Persico, Alice Griggio, Giuseppe Como, Mariarosa Colnaghi, Monica Fumagalli, Donato Cascio, Giacomo Cavallaro","doi":"10.1101/2024.07.25.24311009","DOIUrl":null,"url":null,"abstract":"Prenatal prediction of postnatal outcomes in newborns with congenital diaphragmatic hernia (CDH) remains challenging, especially for mortality and neonatal persistent pulmonary hypertension (PPHN). Despite the increasing utilization of advanced artificial intelligence (AI) technologies in the neonatal field, this study is pioneering in exploring AI methodologies in the context of CDH. It represents an initial attempt to implement a Machine Learning (ML) system to predict postnatal mortality and PPHN severity, using prenatal and early postnatal data as input variables. We enrolled 50 patients with isolated left-sided CDH from singleton pregnancies and retrospectively collected clinical and imaging variables from fetal ultrasound (US) and shape features extracted from magnetic resonance imaging (MRI), combined with gestational age and birth weight. A supervised ML model for predicting mortality and PPHN severity was developed, achieving good accuracy (88% for mortality prediction and 82% for PPHN) and sensitivity (95% for mortality and 85% for PPHN). The area under the curve (AUC) of the ROC curve was 0.88 for mortality and 0.82 for PPHN predictions. Our results may lead to novel AI applications in the neonatal field, focusing on predicting postnatal outcomes based on prenatal data, ultimately improving prognostic assessments and intervention strategies for such a complex disease.","PeriodicalId":501549,"journal":{"name":"medRxiv - Pediatrics","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv - Pediatrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.07.25.24311009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Prenatal prediction of postnatal outcomes in newborns with congenital diaphragmatic hernia (CDH) remains challenging, especially for mortality and neonatal persistent pulmonary hypertension (PPHN). Despite the increasing utilization of advanced artificial intelligence (AI) technologies in the neonatal field, this study is pioneering in exploring AI methodologies in the context of CDH. It represents an initial attempt to implement a Machine Learning (ML) system to predict postnatal mortality and PPHN severity, using prenatal and early postnatal data as input variables. We enrolled 50 patients with isolated left-sided CDH from singleton pregnancies and retrospectively collected clinical and imaging variables from fetal ultrasound (US) and shape features extracted from magnetic resonance imaging (MRI), combined with gestational age and birth weight. A supervised ML model for predicting mortality and PPHN severity was developed, achieving good accuracy (88% for mortality prediction and 82% for PPHN) and sensitivity (95% for mortality and 85% for PPHN). The area under the curve (AUC) of the ROC curve was 0.88 for mortality and 0.82 for PPHN predictions. Our results may lead to novel AI applications in the neonatal field, focusing on predicting postnatal outcomes based on prenatal data, ultimately improving prognostic assessments and intervention strategies for such a complex disease.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
预测先天性膈疝新生儿死亡率和肺动脉高压严重程度的机器学习方法
产前预测患有先天性膈疝(CDH)的新生儿的产后预后仍然具有挑战性,尤其是死亡率和新生儿持续性肺动脉高压(PPHN)。尽管先进的人工智能(AI)技术在新生儿领域的应用日益广泛,但这项研究在探索 CDH 的人工智能方法方面仍具有开创性。它是利用产前和产后早期数据作为输入变量,实施机器学习(ML)系统预测产后死亡率和 PPHN 严重程度的首次尝试。我们招募了 50 名单胎妊娠的孤立性左侧 CDH 患者,并回顾性地收集了来自胎儿超声(US)的临床和影像学变量、从磁共振成像(MRI)中提取的形状特征以及胎龄和出生体重。建立了一个用于预测死亡率和 PPHN 严重程度的有监督 ML 模型,该模型具有良好的准确性(死亡率预测准确率为 88%,PPHN 预测准确率为 82%)和灵敏度(死亡率预测准确率为 95%,PPHN 预测准确率为 85%)。死亡率和 PPHN 预测的 ROC 曲线下面积(AUC)分别为 0.88 和 0.82。我们的研究结果可能会为新生儿领域带来新的人工智能应用,重点是根据产前数据预测产后结果,最终改善对这种复杂疾病的预后评估和干预策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evaluating the Effectiveness of Nirsevimab in Reducing Pediatric RSV Hospitalizations in Spain The Impact of Chlorinated Drinking Water Exposure on Gut Microbiota Development in Infants: a Randomised Controlled Trial. Development of a Novel Dynamic Leak Model to Simulate Leak for Performance Testing of Manual Neonatal Resuscitation Devices. Does Leak Matter? A Bench Study How young people experienced Long COVID services: a qualitative analysis. Knowledge of Childhood and Adolescent Cancer Among Primary Caregivers: An Observational and Prospective Study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1