Measuring Reliable Accessibility to High-Speed Railway Stations by Integrating the Utility-Based Model and Multimodal Space–Time Prism under Travel Time Uncertainty
{"title":"Measuring Reliable Accessibility to High-Speed Railway Stations by Integrating the Utility-Based Model and Multimodal Space–Time Prism under Travel Time Uncertainty","authors":"Yongsheng Zhang, Kangyu Liang, Enjian Yao, Mingyi Gu","doi":"10.3390/ijgi13080263","DOIUrl":null,"url":null,"abstract":"Measuring the accessibility of each traffic zone to high-speed railway stations can evaluate the ease of the transportation hub in the transportation system. The utility-based model, which captures individual travel behavior and subjective perception, is often used to quantify the travel impedance on accessibility for a given origin–destination pair. However, existing studies neglect the impacts of travel time uncertainty on utility and possible choice set when measuring accessibility, especially in high-timeliness travel (e.g., railway stations or airports). This study proposes a novel integration of the utility-based model and multimodal space–time prism under travel time uncertainty to measure reliable accessibility to high-speed railway stations. First, the reliable multimodal space–time prism is developed to generate a reliable travel mode choice set constrained by travel time budgets. Then, the reliable choice set is integrated into the utility-based model with the utility function derived from a proposed mean–standard deviation logit-based mode choice model. Finally, this study contributes to measuring reliable accessibility within areas from Beijing’s 5th Ring Road to the Beijing South Railway Station. Based on the results, policymakers can effectively evaluate the distribution of transportation resources and urban planning.","PeriodicalId":48738,"journal":{"name":"ISPRS International Journal of Geo-Information","volume":"9 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISPRS International Journal of Geo-Information","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3390/ijgi13080263","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Measuring the accessibility of each traffic zone to high-speed railway stations can evaluate the ease of the transportation hub in the transportation system. The utility-based model, which captures individual travel behavior and subjective perception, is often used to quantify the travel impedance on accessibility for a given origin–destination pair. However, existing studies neglect the impacts of travel time uncertainty on utility and possible choice set when measuring accessibility, especially in high-timeliness travel (e.g., railway stations or airports). This study proposes a novel integration of the utility-based model and multimodal space–time prism under travel time uncertainty to measure reliable accessibility to high-speed railway stations. First, the reliable multimodal space–time prism is developed to generate a reliable travel mode choice set constrained by travel time budgets. Then, the reliable choice set is integrated into the utility-based model with the utility function derived from a proposed mean–standard deviation logit-based mode choice model. Finally, this study contributes to measuring reliable accessibility within areas from Beijing’s 5th Ring Road to the Beijing South Railway Station. Based on the results, policymakers can effectively evaluate the distribution of transportation resources and urban planning.
期刊介绍:
ISPRS International Journal of Geo-Information (ISSN 2220-9964) provides an advanced forum for the science and technology of geographic information. ISPRS International Journal of Geo-Information publishes regular research papers, reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
The 2018 IJGI Outstanding Reviewer Award has been launched! This award acknowledge those who have generously dedicated their time to review manuscripts submitted to IJGI. See full details at http://www.mdpi.com/journal/ijgi/awards.