Karim Atashgar, Majid Abbasi, Mostafa Khazaee, Mehdi Karbasian
{"title":"A novel reliability analysis approach for multi‐component systems with stochastic dependency and functional relationships","authors":"Karim Atashgar, Majid Abbasi, Mostafa Khazaee, Mehdi Karbasian","doi":"10.1002/qre.3621","DOIUrl":null,"url":null,"abstract":"Reliability prediction for complex systems utilizing prognostic methods has attracted increasing attention. Furthermore, achieving accurate reliability predictions for complex systems necessitates considering the interaction between components and the multivariate functional relationship that exists among them. This paper proposes a bi‐level method to evaluate the variability of degradation processes and predictive reliability based on the profile monitoring approach for multicomponent systems. Firstly, a multivariate profile structure is introduced to model the framework of degradation analysis in scenarios where there exists stochastic dependency and a multivariate functional relationship between the degradation processes of components. At the component level, the objective is to evaluate the variability of the degradation process for each component considering the presence of stochastic dependence. For the system level analysis, the proposed approach enables the prediction of degradation variability and system reliability by considering the functional relationships among components, without the need for direct calculation of individual component reliabilities. The performance of the proposed model is evaluated through a numerical study and sensitivity analysis conducted on a multicomponent system with a k‐out‐of‐n structure. The results demonstrate the model's notable flexibility and efficiency.","PeriodicalId":56088,"journal":{"name":"Quality and Reliability Engineering International","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quality and Reliability Engineering International","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/qre.3621","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0
Abstract
Reliability prediction for complex systems utilizing prognostic methods has attracted increasing attention. Furthermore, achieving accurate reliability predictions for complex systems necessitates considering the interaction between components and the multivariate functional relationship that exists among them. This paper proposes a bi‐level method to evaluate the variability of degradation processes and predictive reliability based on the profile monitoring approach for multicomponent systems. Firstly, a multivariate profile structure is introduced to model the framework of degradation analysis in scenarios where there exists stochastic dependency and a multivariate functional relationship between the degradation processes of components. At the component level, the objective is to evaluate the variability of the degradation process for each component considering the presence of stochastic dependence. For the system level analysis, the proposed approach enables the prediction of degradation variability and system reliability by considering the functional relationships among components, without the need for direct calculation of individual component reliabilities. The performance of the proposed model is evaluated through a numerical study and sensitivity analysis conducted on a multicomponent system with a k‐out‐of‐n structure. The results demonstrate the model's notable flexibility and efficiency.
期刊介绍:
Quality and Reliability Engineering International is a journal devoted to practical engineering aspects of quality and reliability. A refereed technical journal published eight times per year, it covers the development and practical application of existing theoretical methods, research and industrial practices. Articles in the journal will be concerned with case studies, tutorial-type reviews and also with applications of new or well-known theory to the solution of actual quality and reliability problems in engineering.
Papers describing the use of mathematical and statistical tools to solve real life industrial problems are encouraged, provided that the emphasis is placed on practical applications and demonstrated case studies.
The scope of the journal is intended to include components, physics of failure, equipment and systems from the fields of electronic, electrical, mechanical and systems engineering. The areas of communications, aerospace, automotive, railways, shipboard equipment, control engineering and consumer products are all covered by the journal.
Quality and reliability of hardware as well as software are covered. Papers on software engineering and its impact on product quality and reliability are encouraged. The journal will also cover the management of quality and reliability in the engineering industry.
Special issues on a variety of key topics are published every year and contribute to the enhancement of Quality and Reliability Engineering International as a major reference in its field.