Does EDPVR Represent Myocardial Tissue Stiffness? Toward a Better Definition

Rana Raza Mehdi, Emilio A. Mendiola, Vahid Naeini, Gaurav Choudhary, Reza Avazmohammadi
{"title":"Does EDPVR Represent Myocardial Tissue Stiffness? Toward a Better Definition","authors":"Rana Raza Mehdi, Emilio A. Mendiola, Vahid Naeini, Gaurav Choudhary, Reza Avazmohammadi","doi":"arxiv-2407.15254","DOIUrl":null,"url":null,"abstract":"Accurate assessment of myocardial tissue stiffness is pivotal for the\ndiagnosis and prognosis of heart diseases. Left ventricular diastolic stiffness\n($\\beta$) obtained from the end-diastolic pressure-volume relationship (EDPVR)\nhas conventionally been utilized as a representative metric of myocardial\nstiffness. The EDPVR can be employed to estimate the intrinsic stiffness of\nmyocardial tissues through image-based in-silico inverse optimization. However,\nwhether $\\beta$, as an organ-level metric, accurately represents the\ntissue-level myocardial tissue stiffness in healthy and diseased myocardium\nremains elusive. We developed a modeling-based approach utilizing a\ntwo-parameter material model for the myocardium (denoted by $a_f$ and $b_f$) in\nimage-based in-silico biventricular heart models to generate EDPVRs for\ndifferent material parameters. Our results indicated a variable relationship\nbetween $\\beta$ and the material parameters depending on the range of the\nparameters. Interestingly, $\\beta$ showed a very low sensitivity to $a_f$, once\naveraged across several LV geometries, and even a negative correlation with\n$a_f$ for small values of $a_f$. These findings call for a critical assessment\nof the reliability and confoundedness of EDPVR-derived metrics to represent\ntissue-level myocardial stiffness. Our results also underscore the necessity to\nexplore image-based in-silico frameworks, promising to provide a high-fidelity\nand potentially non-invasive assessment of myocardial stiffness.","PeriodicalId":501572,"journal":{"name":"arXiv - QuanBio - Tissues and Organs","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Tissues and Organs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.15254","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate assessment of myocardial tissue stiffness is pivotal for the diagnosis and prognosis of heart diseases. Left ventricular diastolic stiffness ($\beta$) obtained from the end-diastolic pressure-volume relationship (EDPVR) has conventionally been utilized as a representative metric of myocardial stiffness. The EDPVR can be employed to estimate the intrinsic stiffness of myocardial tissues through image-based in-silico inverse optimization. However, whether $\beta$, as an organ-level metric, accurately represents the tissue-level myocardial tissue stiffness in healthy and diseased myocardium remains elusive. We developed a modeling-based approach utilizing a two-parameter material model for the myocardium (denoted by $a_f$ and $b_f$) in image-based in-silico biventricular heart models to generate EDPVRs for different material parameters. Our results indicated a variable relationship between $\beta$ and the material parameters depending on the range of the parameters. Interestingly, $\beta$ showed a very low sensitivity to $a_f$, once averaged across several LV geometries, and even a negative correlation with $a_f$ for small values of $a_f$. These findings call for a critical assessment of the reliability and confoundedness of EDPVR-derived metrics to represent tissue-level myocardial stiffness. Our results also underscore the necessity to explore image-based in-silico frameworks, promising to provide a high-fidelity and potentially non-invasive assessment of myocardial stiffness.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
EDPVR 是否代表心肌组织僵硬度?努力获得更好的定义
准确评估心肌组织僵硬度对心脏病的诊断和预后至关重要。从舒张末期压力-容积关系(EDPVR)中获得的左心室舒张僵硬度($\beta$)一直被用作心肌僵硬度的代表性指标。EDPVR 可通过基于图像的室内反优化来估计心肌组织的内在刚度。然而,作为器官水平的指标,$\beta$是否能准确代表健康和患病心肌的组织水平心肌组织僵硬度仍是一个未知数。我们开发了一种基于建模的方法,利用心肌的双参数材料模型(用 $a_f$ 和 $b_f$ 表示),在基于模拟的双心室心脏模型中生成不同材料参数的 EDPVR。我们的结果表明,$\beta$与材料参数之间的关系因参数范围而异。有趣的是,$\beta$对$a_f$的敏感性很低,一旦在几种LV几何形状中平均化,甚至在$a_f$值很小的情况下与$a_f$呈负相关。这些发现要求对 EDPVR 衍生的指标代表组织水平心肌僵硬度的可靠性和混杂性进行严格评估。我们的研究结果还强调了探索基于图像的硅内框架的必要性,该框架有望提供高保真和潜在的无创心肌僵硬度评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Clinical Validation of a Real-Time Machine Learning-based System for the Detection of Acute Myeloid Leukemia by Flow Cytometry Dynamic landscapes and statistical limits on growth during cell fate specification (Un)buckling mechanics of epithelial monolayers under compression On the design and stability of cancer adaptive therapy cycles: deterministic and stochastic models Celcomen: spatial causal disentanglement for single-cell and tissue perturbation modeling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1