A spatiotemporal deep learning framework for prediction of crack dynamics in heterogeneous solids: efficient mapping of concrete microstructures to its fracture properties

Rasoul Najafi Koopas, Shahed Rezaei, Natalie Rauter, Richard Ostwald, Rolf Lammering
{"title":"A spatiotemporal deep learning framework for prediction of crack dynamics in heterogeneous solids: efficient mapping of concrete microstructures to its fracture properties","authors":"Rasoul Najafi Koopas, Shahed Rezaei, Natalie Rauter, Richard Ostwald, Rolf Lammering","doi":"arxiv-2407.15665","DOIUrl":null,"url":null,"abstract":"A spatiotemporal deep learning framework is proposed that is capable of 2D\nfull-field prediction of fracture in concrete mesostructures. This framework\nnot only predicts fractures but also captures the entire history of the\nfracture process, from the crack initiation in the interfacial transition zone\nto the subsequent propagation of the cracks in the mortar matrix. In addition,\na convolutional neural network is developed which can predict the averaged\nstress-strain curve of the mesostructures. The UNet modeling framework, which\ncomprises an encoder-decoder section with skip connections, is used as the deep\nlearning surrogate model. Training and test data are generated from\nhigh-fidelity fracture simulations of randomly generated concrete\nmesostructures. These mesostructures include geometric variabilities such as\ndifferent aggregate particle geometrical features, spatial distribution, and\nthe total volume fraction of aggregates. The fracture simulations are carried\nout in Abaqus, utilizing the cohesive phase-field fracture modeling technique\nas the fracture modeling approach. In this work, to reduce the number of\ntraining datasets, the spatial distribution of three sets of material\nproperties for three-phase concrete mesostructures, along with the spatial\nphase-field damage index, are fed to the UNet to predict the corresponding\nstress and spatial damage index at the subsequent step. It is shown that after\nthe training process using this methodology, the UNet model is capable of\naccurately predicting damage on the unseen test dataset by using 470 datasets.\nMoreover, another novel aspect of this work is the conversion of irregular\nfinite element data into regular grids using a developed pipeline. This\napproach allows for the implementation of less complex UNet architecture and\nfacilitates the integration of phase-field fracture equations into surrogate\nmodels for future developments.","PeriodicalId":501309,"journal":{"name":"arXiv - CS - Computational Engineering, Finance, and Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computational Engineering, Finance, and Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.15665","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A spatiotemporal deep learning framework is proposed that is capable of 2D full-field prediction of fracture in concrete mesostructures. This framework not only predicts fractures but also captures the entire history of the fracture process, from the crack initiation in the interfacial transition zone to the subsequent propagation of the cracks in the mortar matrix. In addition, a convolutional neural network is developed which can predict the averaged stress-strain curve of the mesostructures. The UNet modeling framework, which comprises an encoder-decoder section with skip connections, is used as the deep learning surrogate model. Training and test data are generated from high-fidelity fracture simulations of randomly generated concrete mesostructures. These mesostructures include geometric variabilities such as different aggregate particle geometrical features, spatial distribution, and the total volume fraction of aggregates. The fracture simulations are carried out in Abaqus, utilizing the cohesive phase-field fracture modeling technique as the fracture modeling approach. In this work, to reduce the number of training datasets, the spatial distribution of three sets of material properties for three-phase concrete mesostructures, along with the spatial phase-field damage index, are fed to the UNet to predict the corresponding stress and spatial damage index at the subsequent step. It is shown that after the training process using this methodology, the UNet model is capable of accurately predicting damage on the unseen test dataset by using 470 datasets. Moreover, another novel aspect of this work is the conversion of irregular finite element data into regular grids using a developed pipeline. This approach allows for the implementation of less complex UNet architecture and facilitates the integration of phase-field fracture equations into surrogate models for future developments.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于预测异质固体裂缝动力学的时空深度学习框架:混凝土微结构与其断裂特性的高效映射
本文提出了一种时空深度学习框架,能够对混凝土中间结构的断裂进行二维全场预测。该框架不仅能预测断裂,还能捕捉断裂过程的整个历史,包括从界面过渡带的裂缝起始到随后砂浆基体中裂缝的扩展。此外,还开发了一个卷积神经网络,可以预测中间结构的平均应力应变曲线。UNet 建模框架包括一个具有跳接连接的编码器-解码器部分,被用作深度学习代用模型。训练和测试数据来自随机生成的混凝土中间结构的高保真断裂模拟。这些中间结构包括几何变量,如不同的集料颗粒几何特征、空间分布和集料的总体积分数。断裂模拟在 Abaqus 中进行,采用内聚相场断裂建模技术作为断裂建模方法。在这项工作中,为了减少训练数据集的数量,将三相混凝土中间结构的三组材料属性的空间分布以及空间相场损伤指数输入 UNet,以预测后续步骤中相应的应力和空间损伤指数。结果表明,在使用这种方法进行训练后,UNet 模型能够通过使用 470 个数据集准确预测未见测试数据集上的损伤。此外,这项工作的另一个新颖之处在于使用开发的管道将不规则有限元数据转换为规则网格。这种方法允许实施不太复杂的 UNet 体系结构,并有助于将相场断裂方程集成到未来开发的代用模型中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A generalized non-hourglass updated Lagrangian formulation for SPH solid dynamics A Knowledge-Inspired Hierarchical Physics-Informed Neural Network for Pipeline Hydraulic Transient Simulation Uncertainty Analysis of Limit Cycle Oscillations in Nonlinear Dynamical Systems with the Fourier Generalized Polynomial Chaos Expansion Micropolar elastoplasticity using a fast Fourier transform-based solver A differentiable structural analysis framework for high-performance design optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1