Alleviating Non-identifiability: a High-fidelity Calibration Objective for Financial Market Simulation with Multivariate Time Series Data

Chenkai Wang, Junji Ren, Ke Tang, Peng Yang
{"title":"Alleviating Non-identifiability: a High-fidelity Calibration Objective for Financial Market Simulation with Multivariate Time Series Data","authors":"Chenkai Wang, Junji Ren, Ke Tang, Peng Yang","doi":"arxiv-2407.16566","DOIUrl":null,"url":null,"abstract":"The non-identifiability issue has been frequently reported in the social\nsimulation works, where different parameters of an agent-based simulation model\nyield indistinguishable simulated time series data under certain discrepancy\nmetrics. This issue largely undermines the simulation fidelity yet lacks\ndedicated investigations. This paper theoretically analyzes that incorporating\nmultiple time series data features in the model calibration phase can alleviate\nthe non-identifiability exponentially with the increasing number of features.\nTo implement this theoretical finding, a maximization-based aggregation\nfunction is applied to existing discrepancy metrics to form a new calibration\nobjective function. For verification, the financial market simulation, a\ntypical and complex social simulation task, is considered. Empirical studies on\nboth synthetic and real market data witness the significant improvements in\nalleviating the non-identifiability with much higher simulation fidelity of the\nchosen agent-based simulation model. Importantly, as a model-agnostic method,\nit achieves the first successful simulation of the high-frequency market at\nseconds level. Hence, this work is expected to provide not only a rigorous\nunderstanding of non-identifiability in social simulation, but a high-fidelity\ncalibration objective function for financial market simulations.","PeriodicalId":501294,"journal":{"name":"arXiv - QuantFin - Computational Finance","volume":"61 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Computational Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.16566","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The non-identifiability issue has been frequently reported in the social simulation works, where different parameters of an agent-based simulation model yield indistinguishable simulated time series data under certain discrepancy metrics. This issue largely undermines the simulation fidelity yet lacks dedicated investigations. This paper theoretically analyzes that incorporating multiple time series data features in the model calibration phase can alleviate the non-identifiability exponentially with the increasing number of features. To implement this theoretical finding, a maximization-based aggregation function is applied to existing discrepancy metrics to form a new calibration objective function. For verification, the financial market simulation, a typical and complex social simulation task, is considered. Empirical studies on both synthetic and real market data witness the significant improvements in alleviating the non-identifiability with much higher simulation fidelity of the chosen agent-based simulation model. Importantly, as a model-agnostic method, it achieves the first successful simulation of the high-frequency market at seconds level. Hence, this work is expected to provide not only a rigorous understanding of non-identifiability in social simulation, but a high-fidelity calibration objective function for financial market simulations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
缓解不可识别性:利用多变量时间序列数据进行金融市场模拟的高保真校准目标
非可识别性问题在社会模拟研究中屡见报端,即在某些差异度量条件下,基于代理的模拟模式的不同参数会产生不可区分的模拟时间序列数据。这一问题在很大程度上影响了仿真的真实性,但却缺乏专门的研究。本文从理论上分析了在模型校准阶段加入多个时间序列数据特征,可以随着特征数量的增加以指数形式缓解不可识别性。为了进行验证,我们考虑了金融市场模拟这一非典型的复杂社会模拟任务。对合成和真实市场数据的实证研究证明,所选择的基于代理的仿真模型具有更高的仿真保真度,在缓解不可识别性方面取得了显著改善。重要的是,作为一种与模型无关的方法,它首次成功模拟了秒级的高频市场。因此,这项工作不仅有望为社会仿真中的非可识别性提供严谨的理解,而且有望为金融市场仿真提供高保真度的校准目标函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A deep primal-dual BSDE method for optimal stopping problems Robust financial calibration: a Bayesian approach for neural SDEs MANA-Net: Mitigating Aggregated Sentiment Homogenization with News Weighting for Enhanced Market Prediction QuantFactor REINFORCE: Mining Steady Formulaic Alpha Factors with Variance-bounded REINFORCE Signature of maturity in cryptocurrency volatility
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1