Explainable AI in Request-for-Quote

Qiqin Zhou
{"title":"Explainable AI in Request-for-Quote","authors":"Qiqin Zhou","doi":"arxiv-2407.15038","DOIUrl":null,"url":null,"abstract":"In the contemporary financial landscape, accurately predicting the\nprobability of filling a Request-For-Quote (RFQ) is crucial for improving\nmarket efficiency for less liquid asset classes. This paper explores the\napplication of explainable AI (XAI) models to forecast the likelihood of RFQ\nfulfillment. By leveraging advanced algorithms including Logistic Regression,\nRandom Forest, XGBoost and Bayesian Neural Tree, we are able to improve the\naccuracy of RFQ fill rate predictions and generate the most efficient quote\nprice for market makers. XAI serves as a robust and transparent tool for market\nparticipants to navigate the complexities of RFQs with greater precision.","PeriodicalId":501294,"journal":{"name":"arXiv - QuantFin - Computational Finance","volume":"20 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Computational Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.15038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the contemporary financial landscape, accurately predicting the probability of filling a Request-For-Quote (RFQ) is crucial for improving market efficiency for less liquid asset classes. This paper explores the application of explainable AI (XAI) models to forecast the likelihood of RFQ fulfillment. By leveraging advanced algorithms including Logistic Regression, Random Forest, XGBoost and Bayesian Neural Tree, we are able to improve the accuracy of RFQ fill rate predictions and generate the most efficient quote price for market makers. XAI serves as a robust and transparent tool for market participants to navigate the complexities of RFQs with greater precision.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
询价中的可解释人工智能
在当代金融领域,准确预测询价(RFQ)成交的可能性对于提高流动性较低的资产类别的市场效率至关重要。本文探讨了如何应用可解释人工智能(XAI)模型来预测询价成功的可能性。通过利用逻辑回归、随机森林、XGBoost 和贝叶斯神经树等先进算法,我们能够提高 RFQ 满足率预测的准确性,并为做市商生成最有效的报价。XAI 是一款强大而透明的工具,可帮助市场参与者更准确地驾驭复杂的 RFQ。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A deep primal-dual BSDE method for optimal stopping problems Robust financial calibration: a Bayesian approach for neural SDEs MANA-Net: Mitigating Aggregated Sentiment Homogenization with News Weighting for Enhanced Market Prediction QuantFactor REINFORCE: Mining Steady Formulaic Alpha Factors with Variance-bounded REINFORCE Signature of maturity in cryptocurrency volatility
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1