{"title":"Domain Decomposition Learning Methods for Solving Elliptic Problems","authors":"Qi Sun, Xuejun Xu, Haotian Yi","doi":"10.1137/22m1515392","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Scientific Computing, Volume 46, Issue 4, Page A2445-A2474, August 2024. <br/> Abstract. With the aid of hardware and software developments, there has been a surge of interest in solving PDEs by deep learning techniques, and the integration with domain decomposition strategies has recently attracted considerable attention due to its enhanced representation and parallelization capacity of the network solution. While there are already several works that substitute the numerical solver of overlapping Schwarz methods with the deep learning approach, the nonoverlapping counterpart has not been thoroughly studied yet because of the inevitable interface overfitting problem that would propagate the errors to neighboring subdomains and eventually hamper the convergence of outer iteration. In this work, a novel learning approach, i.e., the compensated deep Ritz method using neural network extension operators, is proposed to enable the flux transmission across subregion interfaces with guaranteed accuracy, thereby allowing us to construct effective learning algorithms for realizing the more general nonoverlapping domain decomposition methods in the presence of overfitted interface conditions. Numerical experiments on a series of elliptic boundary value problems, including the regular and irregular interfaces, low and high dimensions, and smooth and high-contrast coefficients on multidomains, are carried out to validate the effectiveness of our proposed domain decomposition learning algorithms. Reproducibility of computational results. This paper has been awarded the “SIAM Reproducibility Badge: Code and data available\" as a recognition that the authors have followed reproducibility principles valued by SISC and the scientific computing community. Code and data that allow readers to reproduce the results in this paper are available in https://github.com/AI4SC-TJU or in the supplementary materials.","PeriodicalId":49526,"journal":{"name":"SIAM Journal on Scientific Computing","volume":"1 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Scientific Computing","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/22m1515392","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
SIAM Journal on Scientific Computing, Volume 46, Issue 4, Page A2445-A2474, August 2024. Abstract. With the aid of hardware and software developments, there has been a surge of interest in solving PDEs by deep learning techniques, and the integration with domain decomposition strategies has recently attracted considerable attention due to its enhanced representation and parallelization capacity of the network solution. While there are already several works that substitute the numerical solver of overlapping Schwarz methods with the deep learning approach, the nonoverlapping counterpart has not been thoroughly studied yet because of the inevitable interface overfitting problem that would propagate the errors to neighboring subdomains and eventually hamper the convergence of outer iteration. In this work, a novel learning approach, i.e., the compensated deep Ritz method using neural network extension operators, is proposed to enable the flux transmission across subregion interfaces with guaranteed accuracy, thereby allowing us to construct effective learning algorithms for realizing the more general nonoverlapping domain decomposition methods in the presence of overfitted interface conditions. Numerical experiments on a series of elliptic boundary value problems, including the regular and irregular interfaces, low and high dimensions, and smooth and high-contrast coefficients on multidomains, are carried out to validate the effectiveness of our proposed domain decomposition learning algorithms. Reproducibility of computational results. This paper has been awarded the “SIAM Reproducibility Badge: Code and data available" as a recognition that the authors have followed reproducibility principles valued by SISC and the scientific computing community. Code and data that allow readers to reproduce the results in this paper are available in https://github.com/AI4SC-TJU or in the supplementary materials.
期刊介绍:
The purpose of SIAM Journal on Scientific Computing (SISC) is to advance computational methods for solving scientific and engineering problems.
SISC papers are classified into three categories:
1. Methods and Algorithms for Scientific Computing: Papers in this category may include theoretical analysis, provided that the relevance to applications in science and engineering is demonstrated. They should contain meaningful computational results and theoretical results or strong heuristics supporting the performance of new algorithms.
2. Computational Methods in Science and Engineering: Papers in this section will typically describe novel methodologies for solving a specific problem in computational science or engineering. They should contain enough information about the application to orient other computational scientists but should omit details of interest mainly to the applications specialist.
3. Software and High-Performance Computing: Papers in this category should concern the novel design and development of computational methods and high-quality software, parallel algorithms, high-performance computing issues, new architectures, data analysis, or visualization. The primary focus should be on computational methods that have potentially large impact for an important class of scientific or engineering problems.