Naz Doğa Dülger, Sema Samatya Yilmaz, Hüseyin Uzuner, Ayse Aytac
{"title":"Fabrication of antibacterial food packaging from polyvinyl alcohol/sodium caseinate composite films cross-linked with lactic acid","authors":"Naz Doğa Dülger, Sema Samatya Yilmaz, Hüseyin Uzuner, Ayse Aytac","doi":"10.1002/vnl.22137","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <p>In this study, Polyvinyl Alcohol (PVA)/Sodium Caseinate (NaCAS) were cross-linked by mixing with Lactic acid (LA) in different proportions (0.5%, 1%, 2%, and 4%). Composite films were obtained from the prepared solutions using the solution casting method. The obtained composite films were appeared as slightly opaque and lightly yellowish, but mostly transparent. As the amount of LA increased, the polarized microscope surface images of the composite films became rougher. It was explained that cross-linking occurred with the aldehyde groups (CHO) determined in the Fourier transform infrared spectroscopy (FTIR) analysis. The increasing 5% weight loss temperature of the films because of cross-linking also increased the thermal strength. In X-ray diffraction analysis (XRD), the 2<i>θ</i> peak intensity of the 2% LA-added film, which had the highest cross-link density, was indicated to be the lowest. It was reported that 4% and above the LA contribution rate negatively affects the physical and mechanical properties of the PVA/NaCAS matrix. The pure PVA/NaCAS film had 30.08 MPa tensile strength and 1.49% tensile strain. The film with 2% LA added showed the tensile strength value closest to the pure film with 23.89 MPa. With a 6.52% value, the film containing 2% LA showed the lowest moisture retention behavior. Pure PVA/NaCAS film, which has a hydrophilic structure with a contact angle of 57°, gained hydrophobic ability with the addition of LA. The 1% LA-added film exhibited the highest hydrophobic behavior with a contact angle value of 99°. With the LA additive, an increase in the contact angle values of the composite films was observed between approximately 61% and 74%. In addition, the water vapor permeability (WVTR) with 582.37 g/m<sup>2</sup> day value of pure PVA/NaCAS composite film decreased after the addition of LA. It was degraded to 322.72 g/m<sup>2</sup> day WVTR value in the 1% LA-added film. 100% antibacterial activity against both <i>E</i>. <i>coli</i> and <i>S</i>. <i>aureus</i> was observed in composite films containing 1% or more LA additive. The resulting films were suggested to be used as active food packaging with antibacterial effects.</p>\n </section>\n \n <section>\n \n <h3> Highlights</h3>\n \n <div>\n <ul>\n \n <li>LA can be used as a crosslinking agent for PVA/NaCAS blends.</li>\n \n <li>2% LA contribution has shown the highest cross-linking density.</li>\n \n <li>4% LA and higher LA contribution would negatively affect the mechanical properties of the matrix.</li>\n \n <li>High antibacterial activity was obtained against both <i>E</i>. <i>coli</i> and <i>S</i>. <i>aureus</i> in films containing 1% or more LA.</li>\n </ul>\n </div>\n </section>\n </div>","PeriodicalId":17662,"journal":{"name":"Journal of Vinyl & Additive Technology","volume":"30 6","pages":"1528-1544"},"PeriodicalIF":3.8000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/vnl.22137","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vinyl & Additive Technology","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/vnl.22137","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, Polyvinyl Alcohol (PVA)/Sodium Caseinate (NaCAS) were cross-linked by mixing with Lactic acid (LA) in different proportions (0.5%, 1%, 2%, and 4%). Composite films were obtained from the prepared solutions using the solution casting method. The obtained composite films were appeared as slightly opaque and lightly yellowish, but mostly transparent. As the amount of LA increased, the polarized microscope surface images of the composite films became rougher. It was explained that cross-linking occurred with the aldehyde groups (CHO) determined in the Fourier transform infrared spectroscopy (FTIR) analysis. The increasing 5% weight loss temperature of the films because of cross-linking also increased the thermal strength. In X-ray diffraction analysis (XRD), the 2θ peak intensity of the 2% LA-added film, which had the highest cross-link density, was indicated to be the lowest. It was reported that 4% and above the LA contribution rate negatively affects the physical and mechanical properties of the PVA/NaCAS matrix. The pure PVA/NaCAS film had 30.08 MPa tensile strength and 1.49% tensile strain. The film with 2% LA added showed the tensile strength value closest to the pure film with 23.89 MPa. With a 6.52% value, the film containing 2% LA showed the lowest moisture retention behavior. Pure PVA/NaCAS film, which has a hydrophilic structure with a contact angle of 57°, gained hydrophobic ability with the addition of LA. The 1% LA-added film exhibited the highest hydrophobic behavior with a contact angle value of 99°. With the LA additive, an increase in the contact angle values of the composite films was observed between approximately 61% and 74%. In addition, the water vapor permeability (WVTR) with 582.37 g/m2 day value of pure PVA/NaCAS composite film decreased after the addition of LA. It was degraded to 322.72 g/m2 day WVTR value in the 1% LA-added film. 100% antibacterial activity against both E. coli and S. aureus was observed in composite films containing 1% or more LA additive. The resulting films were suggested to be used as active food packaging with antibacterial effects.
Highlights
LA can be used as a crosslinking agent for PVA/NaCAS blends.
2% LA contribution has shown the highest cross-linking density.
4% LA and higher LA contribution would negatively affect the mechanical properties of the matrix.
High antibacterial activity was obtained against both E. coli and S. aureus in films containing 1% or more LA.
期刊介绍:
Journal of Vinyl and Additive Technology is a peer-reviewed technical publication for new work in the fields of polymer modifiers and additives, vinyl polymers and selected review papers. Over half of all papers in JVAT are based on technology of additives and modifiers for all classes of polymers: thermoset polymers and both condensation and addition thermoplastics. Papers on vinyl technology include PVC additives.