Catalytic Combustion of Toluene over Co3O4 loaded on ZrSn1−xFexO4−δ

IF 3.3 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY Bulletin of the Chemical Society of Japan Pub Date : 2024-07-27 DOI:10.1093/bulcsj/uoae084
Naoyoshi Nunotani, Takumi Tanaka, Nobuhito Imanaka
{"title":"Catalytic Combustion of Toluene over Co3O4 loaded on ZrSn1−xFexO4−δ","authors":"Naoyoshi Nunotani, Takumi Tanaka, Nobuhito Imanaka","doi":"10.1093/bulcsj/uoae084","DOIUrl":null,"url":null,"abstract":"Toluene is one of the volatile organic compounds which are harmful to the environment and human health. One promising approach to eliminate toluene is catalytic combustion. Although precious metal based catalysts are known to show high activity for toluene combustion, the high price of the precious metals has restricted their widespread applications. In this study, precious-metal-free catalysts of Co3O4/ZrSn1−xFexO4−δ were synthesized for toluene combustion. Here, scrutinyite-type ZrSnO4 was focused as a promoter which can supply active oxygen species from inside the lattice toward the Co3O4 activator. In addition, Fe2+/3+ ions were introduced into the ZrSnO4 lattice to enhance the oxygen supply ability owing to the improvement of redox properties and the formation of oxygen vacancies for smooth oxide ion migration. The oxygen supply from the ZrSn1−xFexO4−δ lattice facilitated toluene oxidation on Co3O4, and the highest catalytic activity was obtained for the 19 wt% Co3O4/ZrSn0.93Fe0.07O4−δ (Co3O4/ZSF0.07) catalyst, where the complete combustion was realized at the temperature as low as 250 °C. The toluene combustion reaction over Co3O4/ZSF0.07 is considered to proceed along a typical route of the rapid transformation of toluene into the intermediates (benzyl alcohol, benzaldehyde, benzoate, and maleic anhydride) and finally the formation of carbon dioxide and water.","PeriodicalId":9511,"journal":{"name":"Bulletin of the Chemical Society of Japan","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Chemical Society of Japan","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1093/bulcsj/uoae084","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Toluene is one of the volatile organic compounds which are harmful to the environment and human health. One promising approach to eliminate toluene is catalytic combustion. Although precious metal based catalysts are known to show high activity for toluene combustion, the high price of the precious metals has restricted their widespread applications. In this study, precious-metal-free catalysts of Co3O4/ZrSn1−xFexO4−δ were synthesized for toluene combustion. Here, scrutinyite-type ZrSnO4 was focused as a promoter which can supply active oxygen species from inside the lattice toward the Co3O4 activator. In addition, Fe2+/3+ ions were introduced into the ZrSnO4 lattice to enhance the oxygen supply ability owing to the improvement of redox properties and the formation of oxygen vacancies for smooth oxide ion migration. The oxygen supply from the ZrSn1−xFexO4−δ lattice facilitated toluene oxidation on Co3O4, and the highest catalytic activity was obtained for the 19 wt% Co3O4/ZrSn0.93Fe0.07O4−δ (Co3O4/ZSF0.07) catalyst, where the complete combustion was realized at the temperature as low as 250 °C. The toluene combustion reaction over Co3O4/ZSF0.07 is considered to proceed along a typical route of the rapid transformation of toluene into the intermediates (benzyl alcohol, benzaldehyde, benzoate, and maleic anhydride) and finally the formation of carbon dioxide and water.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ZrSn1-xFexO4-δ 上负载的 Co3O4 催化燃烧甲苯
甲苯是对环境和人类健康有害的挥发性有机化合物之一。催化燃烧是消除甲苯的一种可行方法。虽然已知贵金属催化剂在甲苯燃烧方面表现出较高的活性,但贵金属的高昂价格限制了其广泛应用。本研究合成了用于甲苯燃烧的 Co3O4/ZrSn1-xFexO4-δ 无贵金属催化剂。在这里,细晶石型 ZrSnO4 被重点用作促进剂,它可以从晶格内部向 Co3O4 激活剂提供活性氧物种。此外,在 ZrSnO4 晶格中还引入了 Fe2+/3+ 离子,通过改善氧化还原特性和形成氧空位使氧化物离子顺利迁移,从而增强了供氧能力。来自 ZrSn1-xFexO4-δ 晶格的氧气供应促进了 Co3O4 上的甲苯氧化反应,19 wt% Co3O4/ZrSn0.93Fe0.07O4-δ (Co3O4/ZSF0.07)催化剂获得了最高的催化活性,在低至 250 °C 的温度下实现了完全燃烧。在 Co3O4/ZSF0.07 上进行的甲苯燃烧反应被认为是沿着甲苯快速转化为中间产物(苯甲醇、苯甲醛、苯甲酸酯和马来酸酐)并最终生成二氧化碳和水的典型路线进行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.40
自引率
5.00%
发文量
194
审稿时长
3-8 weeks
期刊介绍: The Bulletin of the Chemical Society of Japan (BCSJ) is devoted to the publication of scientific research papers in the fields of Theoretical and Physical Chemistry, Analytical and Inorganic Chemistry, Organic and Biological Chemistry, and Applied and Materials Chemistry. BCSJ appears as a monthly journal online and in advance with three kinds of papers (Accounts, Articles, and Short Articles) describing original research. The purpose of BCSJ is to select and publish the most important papers with the broadest significance to the chemistry community in general. The Chemical Society of Japan hopes all visitors will notice the usefulness of our journal and the abundance of topics, and welcomes more submissions from scientists all over the world.
期刊最新文献
Anion Recognition by Phosphoric Triamide-Based Receptors Development of organic photoreactions utilizing the characteristics of elements with low electronegativity Imparting chiroptical property to achiral azobenzene derivative via incorporation into chiral-controlled helical nanofibers Catalytic Combustion of Toluene over Co3O4 loaded on ZrSn1−xFexO4−δ The activity of thermostable NiO/CeO2 heterointerface structure toward low-temperature catalytic CO–NO reaction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1