{"title":"Construction technology for deep tunnels crossing superhigh-temperature fault zones with high water surges","authors":"Yong Zhao, Tingyu Zhu, Li Yu, Ming Lu","doi":"10.1007/s11709-024-1054-2","DOIUrl":null,"url":null,"abstract":"<p>The harsh environment in tunnels with high geothermal temperatures and humidity can adversely impact machinery, personnel, and construction. The main causes of specific problems are the unknown mechanisms of local geothermal formation, inappropriate temperature control measures, and insufficient systematic safeguards. In this study, three work sections relating to a high geothermal tunnel are: the tunnel face, middle-of-tunnel section, and outside-of-tunnel section. A cooling strategy is proposed to offer technical support in achieving comprehensive cooling, overall as well as for each of the sections. First, a comprehensive geological survey explores the mechanism and exact location of the heat source. Secondly, grouting and centralized drainage measures are used to control the heat release of hot water. Enhanced ventilation, ice chillers and other applicable measures are used to control the ambient temperature. Finally, a monitoring and early warning system is established to prevent accidents. This cooling strategy has been applied in the field with good results.</p>","PeriodicalId":12476,"journal":{"name":"Frontiers of Structural and Civil Engineering","volume":"47 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Structural and Civil Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11709-024-1054-2","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
The harsh environment in tunnels with high geothermal temperatures and humidity can adversely impact machinery, personnel, and construction. The main causes of specific problems are the unknown mechanisms of local geothermal formation, inappropriate temperature control measures, and insufficient systematic safeguards. In this study, three work sections relating to a high geothermal tunnel are: the tunnel face, middle-of-tunnel section, and outside-of-tunnel section. A cooling strategy is proposed to offer technical support in achieving comprehensive cooling, overall as well as for each of the sections. First, a comprehensive geological survey explores the mechanism and exact location of the heat source. Secondly, grouting and centralized drainage measures are used to control the heat release of hot water. Enhanced ventilation, ice chillers and other applicable measures are used to control the ambient temperature. Finally, a monitoring and early warning system is established to prevent accidents. This cooling strategy has been applied in the field with good results.
期刊介绍:
Frontiers of Structural and Civil Engineering is an international journal that publishes original research papers, review articles and case studies related to civil and structural engineering. Topics include but are not limited to the latest developments in building and bridge structures, geotechnical engineering, hydraulic engineering, coastal engineering, and transport engineering. Case studies that demonstrate the successful applications of cutting-edge research technologies are welcome. The journal also promotes and publishes interdisciplinary research and applications connecting civil engineering and other disciplines, such as bio-, info-, nano- and social sciences and technology. Manuscripts submitted for publication will be subject to a stringent peer review.