Ankit K. Gautam, Daniel Livescu, Ricardo Mejia-Alvarez
{"title":"Growth of organized flow coherent motions within a single-stream shear layer: 4D-PTV measurements","authors":"Ankit K. Gautam, Daniel Livescu, Ricardo Mejia-Alvarez","doi":"10.1007/s00348-024-03846-5","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigates the evolution of a single-stream shear layer (SSSL) originating from a wall boundary layer past a backward-facing step. Utilizing a time-resolved 3D-Particle Tracking Velocimetry (4D-PTV) technique, we track the trajectories of fluorescent particles to gain insight into the flow characteristics of the SSSL. A compact water tunnel facility (<span>\\(\\textrm{Re}_\\tau =1\\,240\\)</span>) is fabricated to obtain an SSSL with a perpendicular slow entrainment stream past the separation edge. A hybrid interpolation approach that combines ensemble binning and Gaussian weighting is implemented to derive minimally filtered mean and instantaneous lower- and higher-order flow field parameters. Spanwise-dominant coherent motion accompanied by finer flow scales is observed to grow due to flow entrainment through “nibbling” actions of small-scale vortices, “engulfing” by large-scale vortices, and vortex pairing events. Furthermore, the non-zero-speed stream edge grows relatively faster than the zero-speed stream edge, showing a strong asymmetry in mixing composition across a mixing layer. The SSSL reaches self-similarity at a streamwise distance of <span>\\(\\approx 55\\,\\theta _{0}\\)</span>, where <span>\\(\\theta _0\\)</span> is the initial momentum thickness from the separation edge, i.e., considerably shorter than reported in previous studies. A literature comparison of growth rate parameters raises intriguing questions regarding a potential inclusive growth scaling unifying the free shear layers. A turbulent kinetic energy (TKE) budget analysis reveals a negative production region immediately downstream of the separation edge attributed to a large positive streamwise gradient of streamwise velocity. In the self-similar region, the phase-averaged flow mapping demonstrates a larger concentration of turbulence production rate around the outer edges of spanwise vortices, specifically at the intersection of braids and vortices. Furthermore, a spatial separation exists in the regions of peak production and dissipation rates within the vortex core region favoring dissipation. The braids exhibit a larger concentration of turbulence diffusion rates, indicating their function as a conduit for exchanging turbulence between neighboring coherent motions.</p></div>","PeriodicalId":554,"journal":{"name":"Experiments in Fluids","volume":"65 8","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00348-024-03846-5.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experiments in Fluids","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00348-024-03846-5","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates the evolution of a single-stream shear layer (SSSL) originating from a wall boundary layer past a backward-facing step. Utilizing a time-resolved 3D-Particle Tracking Velocimetry (4D-PTV) technique, we track the trajectories of fluorescent particles to gain insight into the flow characteristics of the SSSL. A compact water tunnel facility (\(\textrm{Re}_\tau =1\,240\)) is fabricated to obtain an SSSL with a perpendicular slow entrainment stream past the separation edge. A hybrid interpolation approach that combines ensemble binning and Gaussian weighting is implemented to derive minimally filtered mean and instantaneous lower- and higher-order flow field parameters. Spanwise-dominant coherent motion accompanied by finer flow scales is observed to grow due to flow entrainment through “nibbling” actions of small-scale vortices, “engulfing” by large-scale vortices, and vortex pairing events. Furthermore, the non-zero-speed stream edge grows relatively faster than the zero-speed stream edge, showing a strong asymmetry in mixing composition across a mixing layer. The SSSL reaches self-similarity at a streamwise distance of \(\approx 55\,\theta _{0}\), where \(\theta _0\) is the initial momentum thickness from the separation edge, i.e., considerably shorter than reported in previous studies. A literature comparison of growth rate parameters raises intriguing questions regarding a potential inclusive growth scaling unifying the free shear layers. A turbulent kinetic energy (TKE) budget analysis reveals a negative production region immediately downstream of the separation edge attributed to a large positive streamwise gradient of streamwise velocity. In the self-similar region, the phase-averaged flow mapping demonstrates a larger concentration of turbulence production rate around the outer edges of spanwise vortices, specifically at the intersection of braids and vortices. Furthermore, a spatial separation exists in the regions of peak production and dissipation rates within the vortex core region favoring dissipation. The braids exhibit a larger concentration of turbulence diffusion rates, indicating their function as a conduit for exchanging turbulence between neighboring coherent motions.
期刊介绍:
Experiments in Fluids examines the advancement, extension, and improvement of new techniques of flow measurement. The journal also publishes contributions that employ existing experimental techniques to gain an understanding of the underlying flow physics in the areas of turbulence, aerodynamics, hydrodynamics, convective heat transfer, combustion, turbomachinery, multi-phase flows, and chemical, biological and geological flows. In addition, readers will find papers that report on investigations combining experimental and analytical/numerical approaches.