Mscnet: Mask stepwise calibration network for camouflaged object detection

Haishun Du, Minghao Zhang, Wenzhe Zhang, Kangyi Qiao
{"title":"Mscnet: Mask stepwise calibration network for camouflaged object detection","authors":"Haishun Du, Minghao Zhang, Wenzhe Zhang, Kangyi Qiao","doi":"10.1007/s11227-024-06376-3","DOIUrl":null,"url":null,"abstract":"<p>Camouflaged object detection (COD) aims to accurately segment camouflaged objects blending into the environment and is a challenging task. Most existing deep learning-based COD methods do not explicitly enhance the region information of camouflaged objects, nor do they use the region information for mask calibration. To solve this issue, we propose a novel mask stepwise calibration network (MSCNet) for camouflaged object detection, which achieves high-precision detection of camouflaged objects. Specifically, MSCNet consists of a region information enhancement encoder and a mask stepwise calibration decoder. In the encoder, we first utilize a PVT backbone network to extract different levels of features from camouflaged images. Then, we design a region information enhancement module to enhance the region information of camouflaged objects while suppressing the interference of background information by mining, embedding, and aggregating the region information in different levels of features. In the decoder, we first design a coarse mask generation module to generate coarse prediction masks of camouflaged objects by directly cross-fusing different levels of features extracted by the backbone. In addition, we also design a mask calibration module to calibrate coarse prediction masks of camouflaged objects using the region information of different levels of camouflaged objects as a guide. Extensive experimental results on four benchmark datasets show that our method effectively identifies camouflaged objects and surpasses most state-of-the-art COD methods.</p>","PeriodicalId":501596,"journal":{"name":"The Journal of Supercomputing","volume":"70 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Supercomputing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11227-024-06376-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Camouflaged object detection (COD) aims to accurately segment camouflaged objects blending into the environment and is a challenging task. Most existing deep learning-based COD methods do not explicitly enhance the region information of camouflaged objects, nor do they use the region information for mask calibration. To solve this issue, we propose a novel mask stepwise calibration network (MSCNet) for camouflaged object detection, which achieves high-precision detection of camouflaged objects. Specifically, MSCNet consists of a region information enhancement encoder and a mask stepwise calibration decoder. In the encoder, we first utilize a PVT backbone network to extract different levels of features from camouflaged images. Then, we design a region information enhancement module to enhance the region information of camouflaged objects while suppressing the interference of background information by mining, embedding, and aggregating the region information in different levels of features. In the decoder, we first design a coarse mask generation module to generate coarse prediction masks of camouflaged objects by directly cross-fusing different levels of features extracted by the backbone. In addition, we also design a mask calibration module to calibrate coarse prediction masks of camouflaged objects using the region information of different levels of camouflaged objects as a guide. Extensive experimental results on four benchmark datasets show that our method effectively identifies camouflaged objects and surpasses most state-of-the-art COD methods.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mscnet:用于伪装物体检测的掩码逐步校准网络
伪装物体检测(COD)旨在准确分割融入环境的伪装物体,是一项具有挑战性的任务。现有的基于深度学习的伪装物体检测方法大多没有明确增强伪装物体的区域信息,也没有使用区域信息进行掩膜校准。为了解决这个问题,我们提出了一种用于伪装物体检测的新型掩膜逐步校准网络(MSCNet),它可以实现伪装物体的高精度检测。具体来说,MSCNet 由区域信息增强编码器和掩膜逐步校准解码器组成。在编码器中,我们首先利用 PVT 骨干网络从伪装图像中提取不同层次的特征。然后,我们设计了一个区域信息增强模块,通过挖掘、嵌入和聚合不同层次特征中的区域信息,增强伪装物体的区域信息,同时抑制背景信息的干扰。在解码器中,我们首先设计了粗掩码生成模块,通过直接交叉融合骨干提取的不同层次的特征,生成伪装物体的粗预测掩码。此外,我们还设计了一个掩码校准模块,以不同层次伪装物体的区域信息为指导,校准伪装物体的粗预测掩码。在四个基准数据集上的大量实验结果表明,我们的方法能有效识别伪装物体,并超越了大多数最先进的 COD 方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A quadratic regression model to quantify certain latest corona treatment drug molecules based on coindices of M-polynomial Data integration from traditional to big data: main features and comparisons of ETL approaches End-to-end probability analysis method for multi-core distributed systems A cloud computing approach to superscale colored traveling salesman problems Approximating neural distinguishers using differential-linear imbalance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1