Donghui Liu, Fei Niu, Xiaolin Zhang, Leiting Shen, Youming Yang
{"title":"Calciothermic Reduction Reaction Behavior and Samarium Ion Valence Evolution of SmF3","authors":"Donghui Liu, Fei Niu, Xiaolin Zhang, Leiting Shen, Youming Yang","doi":"10.1007/s42461-024-01044-9","DOIUrl":null,"url":null,"abstract":"<p>Samarium is a rare earth element that exhibits variable valence states of + 2 and + 3. In this work, we present the reduction products obtained through calciothermic reduction of SmF<sub>3</sub> at various molar ratios of Ca to SmF<sub>3</sub>. The crystal structure, morphology, elemental distribution, and chemical valence of the reduction products were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), and X-ray photoelectron spectroscopy (XPS). The results show that SmF<sub>2.028</sub> and CaF<sub>2</sub> are the sole reduction products obtained under molar ratios of 0.5, 1, 1.5, and 2 for Ca to SmF<sub>3</sub>, whereas some unreacted metallic Ca is detected in the products at a molar ratio of Ca to SmF<sub>3</sub> of 2. The samarium ions in the reduction products exhibit mixed valence states with a relative content of approximately 9:1 for Sm<sup>3+</sup> and Sm<sup>2+</sup>. Notably, the large amount of adsorbed oxygen present in the products oxidizes Sm<sup>2+</sup> to Sm<sup>3+</sup>.</p>","PeriodicalId":18588,"journal":{"name":"Mining, Metallurgy & Exploration","volume":"51 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mining, Metallurgy & Exploration","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s42461-024-01044-9","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Samarium is a rare earth element that exhibits variable valence states of + 2 and + 3. In this work, we present the reduction products obtained through calciothermic reduction of SmF3 at various molar ratios of Ca to SmF3. The crystal structure, morphology, elemental distribution, and chemical valence of the reduction products were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), and X-ray photoelectron spectroscopy (XPS). The results show that SmF2.028 and CaF2 are the sole reduction products obtained under molar ratios of 0.5, 1, 1.5, and 2 for Ca to SmF3, whereas some unreacted metallic Ca is detected in the products at a molar ratio of Ca to SmF3 of 2. The samarium ions in the reduction products exhibit mixed valence states with a relative content of approximately 9:1 for Sm3+ and Sm2+. Notably, the large amount of adsorbed oxygen present in the products oxidizes Sm2+ to Sm3+.
期刊介绍:
The aim of this international peer-reviewed journal of the Society for Mining, Metallurgy & Exploration (SME) is to provide a broad-based forum for the exchange of real-world and theoretical knowledge from academia, government and industry that is pertinent to mining, mineral/metallurgical processing, exploration and other fields served by the Society.
The journal publishes high-quality original research publications, in-depth special review articles, reviews of state-of-the-art and innovative technologies and industry methodologies, communications of work of topical and emerging interest, and other works that enhance understanding on both the fundamental and practical levels.