Discovery of highly anisotropic dielectric crystals with equivariant graph neural networks

IF 3.3 3区 化学 Q2 CHEMISTRY, PHYSICAL Faraday Discussions Pub Date : 2024-07-25 DOI:10.1039/d4fd00096j
Yuchen Lou, Alex M Ganose
{"title":"Discovery of highly anisotropic dielectric crystals with equivariant graph neural networks","authors":"Yuchen Lou, Alex M Ganose","doi":"10.1039/d4fd00096j","DOIUrl":null,"url":null,"abstract":"Anisotropy in crystals plays a pivotal role in many technological applications. For example, anisotropic electronic and thermal transport are thought to be beneficial for thermoelectric applications, while anisotropic mechanical properties are of interest for emerging metamaterials, and anisotropic dielectric materials have been suggested as a novel platform for dark matter detection. Understanding and tailoring anisotropy in crystals is therefore essential for the design of next-generation functional materials. To date, however, most data-driven approaches have focused on the prediction of scalar crystal properties, such as the spherically averaged dielectric tensor or the bulk and shear elastic moduli. Here, we adopt the latest approaches in equivariant graph neural networks to develop a model that can predict the full dielectric tensor of crystals. Our model, trained on the Materials Project dataset of c.a.~6,700 dielectric tensors, achieves state-of-the-art accuracy in scalar dielectric prediction in addition to capturing the directional response. We showcase the performance of the model by discovering crystals with almost isotropic connectivity but highly anisotropic dielectric tensors, thereby broadening our knowledge of the structure-property relationships in dielectric crystals.","PeriodicalId":76,"journal":{"name":"Faraday Discussions","volume":"21 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Faraday Discussions","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4fd00096j","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Anisotropy in crystals plays a pivotal role in many technological applications. For example, anisotropic electronic and thermal transport are thought to be beneficial for thermoelectric applications, while anisotropic mechanical properties are of interest for emerging metamaterials, and anisotropic dielectric materials have been suggested as a novel platform for dark matter detection. Understanding and tailoring anisotropy in crystals is therefore essential for the design of next-generation functional materials. To date, however, most data-driven approaches have focused on the prediction of scalar crystal properties, such as the spherically averaged dielectric tensor or the bulk and shear elastic moduli. Here, we adopt the latest approaches in equivariant graph neural networks to develop a model that can predict the full dielectric tensor of crystals. Our model, trained on the Materials Project dataset of c.a.~6,700 dielectric tensors, achieves state-of-the-art accuracy in scalar dielectric prediction in addition to capturing the directional response. We showcase the performance of the model by discovering crystals with almost isotropic connectivity but highly anisotropic dielectric tensors, thereby broadening our knowledge of the structure-property relationships in dielectric crystals.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用等变图神经网络发现高各向异性介电晶体
晶体中的各向异性在许多技术应用中起着举足轻重的作用。例如,各向异性的电子和热传输被认为有利于热电应用,而各向异性的机械特性则是新兴超材料的兴趣所在,各向异性的介电材料被认为是暗物质探测的新型平台。因此,了解和调整晶体中的各向异性对于设计下一代功能材料至关重要。然而,迄今为止,大多数数据驱动方法都侧重于标量晶体特性的预测,如球面平均介电张量或体积弹性模量和剪切弹性模量。在此,我们采用等变图神经网络的最新方法,开发出一种可预测晶体全介电常量的模型。我们的模型是在包含约 6,700 个介电张量的材料项目数据集上训练出来的,除了捕捉方向性响应外,在标量介电预测方面也达到了最先进的精度。我们通过发现具有几乎各向同性连接但介电张量高度各向异性的晶体来展示该模型的性能,从而拓宽了我们对介电晶体结构-性能关系的认识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Faraday Discussions
Faraday Discussions 化学-物理化学
自引率
0.00%
发文量
259
期刊介绍: Discussion summary and research papers from discussion meetings that focus on rapidly developing areas of physical chemistry and its interfaces
期刊最新文献
Discovering synthesis targets: general discussion. Discovering trends in big data: general discussion. Discovering structure-property correlations: general discussion. Discovering chemical structure: general discussion. Understanding dynamics and mechanisms: general discussion.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1