Uniform chi-squared model probabilities in NMR crystallography

IF 3.4 3区 化学 Q2 Chemistry Faraday Discussions Pub Date : 2024-07-23 DOI:10.1039/D4FD00114A
Leonard J. Mueller
{"title":"Uniform chi-squared model probabilities in NMR crystallography","authors":"Leonard J. Mueller","doi":"10.1039/D4FD00114A","DOIUrl":null,"url":null,"abstract":"<p >A nearly universal component of NMR crystallography is the ranking of candidate structures based on how well their first-principles-predicted NMR parameters align with the results of solid-state NMR experiments. Here, a novel approach for assigning probabilities to candidate models is proposed that quantifies the likelihood that each model is the correct experimental structure. This method employs hierarchical Bayesian inference and leverages explicit prior probabilities derived from a uniform distribution of potential candidate structures with respect to chi-squared values. The resulting uniform chi-squared (UC) model provides a more cautious estimate of candidate probabilities compared to previous approaches, assigning decreased likelihood to the best-fit structure and increased likelihood to alternate candidates. Although developed here within the context of NMR crystallography, the UC model represents a general method for assigning likelihoods based on chi-squared goodness-of-fit assessments.</p>","PeriodicalId":49075,"journal":{"name":"Faraday Discussions","volume":" 0","pages":" 203-221"},"PeriodicalIF":3.4000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Faraday Discussions","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/fd/d4fd00114a","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Chemistry","Score":null,"Total":0}
引用次数: 0

Abstract

A nearly universal component of NMR crystallography is the ranking of candidate structures based on how well their first-principles-predicted NMR parameters align with the results of solid-state NMR experiments. Here, a novel approach for assigning probabilities to candidate models is proposed that quantifies the likelihood that each model is the correct experimental structure. This method employs hierarchical Bayesian inference and leverages explicit prior probabilities derived from a uniform distribution of potential candidate structures with respect to chi-squared values. The resulting uniform chi-squared (UC) model provides a more cautious estimate of candidate probabilities compared to previous approaches, assigning decreased likelihood to the best-fit structure and increased likelihood to alternate candidates. Although developed here within the context of NMR crystallography, the UC model represents a general method for assigning likelihoods based on chi-squared goodness-of-fit assessments.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
核磁共振晶体学中的均匀齐次方模型概率
核磁共振晶体学的一个几乎普遍的组成部分是根据候选结构的第一原理预测核磁共振参数与固态核磁共振实验结果的吻合程度对候选结构进行排序。本文提出了一种为候选模型分配概率的新方法,该方法量化了每个模型是正确实验结构的可能性。这种方法采用了分层贝叶斯推理,并利用了从潜在候选结构的均匀分布得出的明确先验概率。与以前的方法相比,由此产生的统一卡方(UC)模型对候选概率的估计更加谨慎,对最佳拟合结构的可能性降低,而对其他候选结构的可能性增加。尽管 UC 模型是在核磁共振晶体学的背景下开发的,但它代表了一种基于卡方拟合度评估来分配可能性的通用方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Faraday Discussions
Faraday Discussions CHEMISTRY, PHYSICAL-
CiteScore
4.90
自引率
0.00%
发文量
259
审稿时长
2.8 months
期刊介绍: Discussion summary and research papers from discussion meetings that focus on rapidly developing areas of physical chemistry and its interfaces
期刊最新文献
Back cover List of participants Poster list Back cover Poster list
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1