Enhanced Nanoparticle Recognition via Deep Learning-Accelerated Plasmonic Sensing

Biosensors Pub Date : 2024-07-26 DOI:10.3390/bios14080363
Ke-Xin Jin, Jia Shen, Yi-Jing Wang, Yu Yang, Shuo-Hui Cao
{"title":"Enhanced Nanoparticle Recognition via Deep Learning-Accelerated Plasmonic Sensing","authors":"Ke-Xin Jin, Jia Shen, Yi-Jing Wang, Yu Yang, Shuo-Hui Cao","doi":"10.3390/bios14080363","DOIUrl":null,"url":null,"abstract":"Surface plasmon microscopy proves to be a potent tool for capturing interferometric scattering imaging data of individual particles at both micro and nanoscales, offering considerable potential for label-free analysis of bio-particles and bio-molecules such as exosomes, viruses, and bacteria. However, the manual analysis of acquired images remains a challenge, particularly when dealing with dense samples or strong background noise, common in practical measurements. Manual analysis is not only prone to errors but is also time-consuming, especially when handling a large volume of experimental images. Currently, automated methods for sensing and analysis of such data are lacking. In this paper, we develop an accelerated approach for surface plasmon microscopy imaging of individual particles based on combining the interference scattering model of single particle and deep learning processing. We create hybrid datasets by combining the theoretical simulation of particle images with the actual measurements. Subsequently, we construct a neural network utilizing the EfficientNet architecture. Our results demonstrate the effectiveness of this novel deep learning technique in classifying interferometric scattering images and identifying multiple particles under noisy conditions. This advancement paves the way for practical bio-applications through efficient automated particle analysis.","PeriodicalId":100185,"journal":{"name":"Biosensors","volume":"67 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors","FirstCategoryId":"0","ListUrlMain":"https://doi.org/10.3390/bios14080363","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Surface plasmon microscopy proves to be a potent tool for capturing interferometric scattering imaging data of individual particles at both micro and nanoscales, offering considerable potential for label-free analysis of bio-particles and bio-molecules such as exosomes, viruses, and bacteria. However, the manual analysis of acquired images remains a challenge, particularly when dealing with dense samples or strong background noise, common in practical measurements. Manual analysis is not only prone to errors but is also time-consuming, especially when handling a large volume of experimental images. Currently, automated methods for sensing and analysis of such data are lacking. In this paper, we develop an accelerated approach for surface plasmon microscopy imaging of individual particles based on combining the interference scattering model of single particle and deep learning processing. We create hybrid datasets by combining the theoretical simulation of particle images with the actual measurements. Subsequently, we construct a neural network utilizing the EfficientNet architecture. Our results demonstrate the effectiveness of this novel deep learning technique in classifying interferometric scattering images and identifying multiple particles under noisy conditions. This advancement paves the way for practical bio-applications through efficient automated particle analysis.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过深度学习加速等离子传感增强纳米粒子识别能力
事实证明,表面等离子体显微镜是捕捉微米和纳米尺度单个粒子干涉散射成像数据的有效工具,为生物粒子和生物分子(如外泌体、病毒和细菌)的无标记分析提供了巨大的潜力。然而,对获取的图像进行人工分析仍然是一项挑战,尤其是在处理实际测量中常见的高密度样本或强背景噪声时。人工分析不仅容易出错,而且耗时,尤其是在处理大量实验图像时。目前,还缺乏感知和分析此类数据的自动化方法。在本文中,我们开发了一种基于单颗粒干涉散射模型和深度学习处理相结合的单颗粒表面等离子显微成像加速方法。我们将粒子图像的理论模拟与实际测量相结合,创建了混合数据集。随后,我们利用 EfficientNet 架构构建了一个神经网络。我们的研究结果证明了这种新型深度学习技术在干扰条件下对干涉散射图像进行分类和识别多个粒子的有效性。这一进步通过高效的自动颗粒分析为实际生物应用铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Electrochemical Impedance Spectroscopy-Based Microfluidic Biosensor Using Cell-Imprinted Polymers for Bacteria Detection Ultrasensitive Electrochemical Biosensors Based on Allosteric Transcription Factors (aTFs) for Pb2+ Detection Salmonella Detection in Food Using a HEK-hTLR5 Reporter Cell-Based Sensor Paper-Based Microfluidic Device for Extracellular Lactate Detection Recent Electrochemical Advancements for Liquid-Biopsy Nucleic Acid Detection for Point-of-Care Prostate Cancer Diagnostics and Prognostics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1