{"title":"Prospects for Measuring the Post-Newtonian \\(\\boldsymbol{\\gamma}\\) Parameter Using Two Satellites Equipped with Highly Stable Atomic Clocks","authors":"D. A. Litvinov","doi":"10.1134/S1063773724700130","DOIUrl":null,"url":null,"abstract":"<p>We investigate the possibility of experimentally determining the value of the PPN <span>\\(\\gamma\\)</span> parameter, which characterizes possible deviations from general relativity, by measuring the gravitational frequency shift of signals exchanged by two satellites in geo- and heliocentric orbits. We demonstrate that with modern optical clocks the accuracy of an experiment based on our concept can reach an accuracy of at least <span>\\(1.4\\times 10^{-8}\\)</span>, which is 3 orders of magnitude better than the current best result achieved with the Cassini interplanetary probe.</p>","PeriodicalId":55443,"journal":{"name":"Astronomy Letters-A Journal of Astronomy and Space Astrophysics","volume":"50 4","pages":"221 - 229"},"PeriodicalIF":1.1000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astronomy Letters-A Journal of Astronomy and Space Astrophysics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S1063773724700130","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
We investigate the possibility of experimentally determining the value of the PPN \(\gamma\) parameter, which characterizes possible deviations from general relativity, by measuring the gravitational frequency shift of signals exchanged by two satellites in geo- and heliocentric orbits. We demonstrate that with modern optical clocks the accuracy of an experiment based on our concept can reach an accuracy of at least \(1.4\times 10^{-8}\), which is 3 orders of magnitude better than the current best result achieved with the Cassini interplanetary probe.
期刊介绍:
Astronomy Letters is an international peer reviewed journal that publishes the results of original research on all aspects of modern astronomy and astrophysics including high energy astrophysics, cosmology, space astronomy, theoretical astrophysics, radio astronomy, extragalactic astronomy, stellar astronomy, and investigation of the Solar system.