E. Nurullaev, L. L. Khimenko, A. N. Kozlov, S. R. Allayarov
{"title":"Stress–Strain Properties of a Microwave-Irradiated Polymer Composite Based on Rubber PDI-3A","authors":"E. Nurullaev, L. L. Khimenko, A. N. Kozlov, S. R. Allayarov","doi":"10.1134/s0018143924700310","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>The stress–strain diagram of a polymer composite material based on rubber PDI-3A filled with thermally expanded graphite or potassium chloride has been studied before and after microwave treatment for 300, 600, 900, and 1200 s. It has been found that the ultimate tensile strength and strain increase twofold after a 300-s microwave treatment and testing at 223 K. A significant decrease in the stress–strain properties of the synthesized composites with an increase in the test temperature or microwave treatment time is observed.</p>","PeriodicalId":12893,"journal":{"name":"High Energy Chemistry","volume":"20 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Energy Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1134/s0018143924700310","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The stress–strain diagram of a polymer composite material based on rubber PDI-3A filled with thermally expanded graphite or potassium chloride has been studied before and after microwave treatment for 300, 600, 900, and 1200 s. It has been found that the ultimate tensile strength and strain increase twofold after a 300-s microwave treatment and testing at 223 K. A significant decrease in the stress–strain properties of the synthesized composites with an increase in the test temperature or microwave treatment time is observed.
期刊介绍:
High Energy Chemistry publishes original articles, reviews, and short communications on molecular and supramolecular photochemistry, photobiology, radiation chemistry, plasma chemistry, chemistry of nanosized systems, chemistry of new atoms, processes and materials for optical information systems and other areas of high energy chemistry. It publishes theoretical and experimental studies in all areas of high energy chemistry, such as the interaction of high-energy particles with matter, the nature and reactivity of short-lived species induced by the action of particle and electromagnetic radiation or hot atoms on substances in their gaseous and condensed states, and chemical processes initiated in organic and inorganic systems by high-energy radiation.